767 research outputs found

    The role of cell-cell adhesion in wound healing

    Full text link
    We present a stochastic model which describes fronts of cells invading a wound. In the model cells can move, proliferate, and experience cell-cell adhesion. We find several qualitatively different regimes of front motion and analyze the transitions between them. Above a critical value of adhesion and for small proliferation large isolated clusters are formed ahead of the front. This is mapped onto the well-known ferromagnetic phase transition in the Ising model. For large adhesion, and larger proliferation the clusters become connected (at some fixed time). For adhesion below the critical value the results are similar to our previous work which neglected adhesion. The results are compared with experiments, and possible directions of future work are proposed.Comment: to appear in Journal of Statistical Physic

    Tumor growth instability and the onset of invasion

    Full text link
    Motivated by experimental observations, we develop a mathematical model of chemotactically directed tumor growth. We present an analytical study of the model as well as a numerical one. The mathematical analysis shows that: (i) tumor cell proliferation by itself cannot generate the invasive branching behaviour observed experimentally, (ii) heterotype chemotaxis provides an instability mechanism that leads to the onset of tumor invasion and (iii) homotype chemotaxis does not provide such an instability mechanism but enhances the mean speed of the tumor surface. The numerical results not only support the assumptions needed to perform the mathematical analysis but they also provide evidence of (i), (ii) and (iii). Finally, both the analytical study and the numerical work agree with the experimental phenomena.Comment: 12 pages, 8 figures, revtex

    A mathematical model for fibro-proliferative wound healing disorders

    Get PDF
    The normal process of dermal wound healing fails in some cases, due to fibro-proliferative disorders such as keloid and hypertrophic scars. These types of abnormal healing may be regarded as pathologically excessive responses to wounding in terms of fibroblastic cell profiles and their inflammatory growth-factor mediators. Biologically, these conditions are poorly understood and current medical treatments are thus unreliable. In this paper, the authors apply an existing deterministic mathematical model for fibroplasia and wound contraction in adult mammalian dermis (Olsenet al., J. theor. Biol. 177, 113–128, 1995) to investigate key clinical problems concerning these healing disorders. A caricature model is proposed which retains the fundamental cellular and chemical components of the full model, in order to analyse the spatiotemporal dynamics of the initiation, progression, cessation and regression of fibro-contractive diseases in relation to normal healing. This model accounts for fibroblastic cell migration, proliferation and death and growth-factor diffusion, production by cells and tissue removal/decay. Explicit results are obtained in terms of the model processes and parameters. The rate of cellular production of the chemical is shown to be critical to the development of a stable pathological state. Further, cessation and/or regression of the disease depend on appropriate spatiotemporally varying forms for this production rate, which can be understood in terms of the bistability of the normal dermal and pathological steady states—a central property of the model, which is evident from stability and bifurcation analyses. The work predicts novel, biologically realistic and testable pathogenic and control mechanisms, the understanding of which will lead toward more effective strategies for clinical therapy of fibro-proliferative disorders

    Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing

    Get PDF
    Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy

    The MUK five protocol : a phase II randomised, controlled, parallel group, multi-centre trial of carfilzomib, cyclophosphamide and dexamethasone (CCD) vs. cyclophosphamide, bortezomib (Velcade) and dexamethasone (CVD) for first relapse and primary refractory multiple myeloma

    Get PDF
    Altres ajuts: The study is funded by Myeloma UK, who receive funding from Onyx Pharmaceuticals Inc., a subsidiary of Amgen Inc.Multiple myeloma is a plasma cell tumour with an annual incidence in the UK of approximately 40-50 per million i.e. about 4500 new cases per annum. The triple combination cyclophosphamide, bortezomib (Velcade®) and dexamethasone (CVD) is an effective regimen at relapse and has emerged in recent years as the standard therapy at first relapse in the UK. Carfilzomib has good activity as a single agent in the relapsed setting, and it is expected that efficacy will be improved when used in combination with dexamethasone and cyclophosphamide. MUK Five is a phase II open label, randomised, controlled, parallel group, multi-centre trial that will compare the activity of carfilzomib, cyclophosphamide and dexamethasone (CCD) with that of CVD, given over an equivalent treatment period (24 weeks), in participants with multiple myeloma at first relapse, or refractory to no more than 1 line of treatment. In addition, the study also aims to assess the utility of a maintenance schedule of carfilzomib in these participants. The primary objective of the trial is to assess whether CCD provides non-inferior activity in terms of ≥ VGPR rates at 24 weeks, and whether the addition of maintenance treatment with carfilzomib to CCD provides superior activity in terms of progression-free survival, as compared to CCD with no maintenance. Secondary objectives include comparing toxicity profiles, further summarizing and comparing the activity of the different treatment arms and analysis of the effect of each treatment arm on minimal residual disease status. The development of carfilzomib offers the opportunity to further explore the anti-tumour efficacy of proteasome inhibition and, based on the available evidence, it is important and timely to obtain data on the activity, toxicity and tolerability of this drug. In contrast to ongoing phase III trials, this phase II trial has a unique subset of participants diagnosed with multiple myeloma at first relapse or refractory to no more than 1 line of treatment and will also evaluate the utility of maintenance with carfilzomib for up to 18 months and investigate minimal residual disease status to provide information on depth of response and the prognostic impact thereof. The trial is registered under , December 2012

    Healthcare designers’ use of prescriptive and performance-based approaches

    Get PDF
    In the UK, healthcare built environment design is guided by a series of long-established design standards and guidance issued by the Department of Health. More recently, healthcare design focus has broadened to encompass new approaches, supported by large bodies of credible research evidence. It is therefore timely to rethink how healthcare design standards and guidance should be best expressed to suit ‘designerly ways’ of using evidence, to improve their use and effectiveness in practice. This research explored how designers use performance and prescriptive approaches during the healthcare design process. Three in-depth healthcare built environment case studies were used to explore how designers employed such approaches during the design of selected exemplar design elements. Results show that design elements in the pre and conceptual design phases significantly employed performance-based approaches, and due to project-unique circumstances, prescriptive solutions were often significantly modified based on performance criteria. For design elements in the detailed and technical design phases, there was a significant use of solutions based on prescriptive approaches, whilst performance-based criteria were used to evaluate design solutions. This research proposes a performance-based, specification-driven healthcare design with supplementary prescriptive specifications provided for optimum healthcare environment design

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
    corecore