19,511 research outputs found
Eyelid development, fusion and subsequent reopening in the mouse
The process of eyelid development was studied in the mouse. The critical events occur between about 15.5 d postcoitum (p.c.) and 12 d after birth, and were studied by conventional histology and by scanning electron microscopy. At about 15.5 d p.c. the cornea of the eye is clearly visible with the primitive eyelids being represented by protruding ridges of epithelium at its periphery. Over the next 24 h, eyelid development proceeds to the stage when the cornea is completely covered by the fused eyelids. Periderm cells stream in to fill the gap between the developing eyelids. Their proliferative activity is such that they produce a cellular excrescence on the outer surface of the line of fusion of the eyelids. This excrescence had almost disappeared by about 17.5 d p.c. Keratinisation is first evident at this stage on the surface of the eyelids and passes continuously from one eyelid to the other. Evidence of epidermal differentiation is more clearly seen in the newborn, where a distinctive stratum granulosum now occupies about one third of its entire thickness. Within the subjacent dermis, hair follicles are differentiating. By about 5 d after birth, a thick layer of keratin extends without interruption across the junctional region. While a noticeable surface indentation overlies the latter, a similar depression is only seen on the conjunctival surface by about 10 d after birth. Keratinisation is also observed to extend in from the epidermal surface to involve the entire region between the 2 eyelids at about this time.(ABSTRACT TRUNCATED AT 250 WORDS
Turbine Vane External Heat Transfer. Volume 1: Analytical and Experimental Evaluation of Surface Heat Transfer Distributions with Leading Edge Showerhead Film Cooling
Progress in predictive design capabilities for external heat transfer to turbine vanes was summarized. A two dimensional linear cascade (previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils) was used to examine the effect of leading edge shower head film cooling on downstream heat transfer. The data were used to develop and evaluate analytical models. Modifications to the two dimensional boundary layer model are described. The results were used to formulate and test an effective viscosity model capable of predicting heat transfer phenomena downstream of the leading edge film cooling array on both the suction and pressure surfaces, with and without mass injection
Potts-Percolation-Gauss Model of a Solid
We study a statistical mechanics model of a solid. Neighboring atoms are
connected by Hookian springs. If the energy is larger than a threshold the
"spring" is more likely to fail, while if the energy is lower than the
threshold the spring is more likely to be alive. The phase diagram and
thermodynamic quantities, such as free energy, numbers of bonds and clusters,
and their fluctuations, are determined using renormalization-group and
Monte-Carlo techniques.Comment: 10 pages, 12 figure
Evaluation of structural analysis methods for life prediction
The utility of advanced constitutive models and structural analysis methods are evaluated for predicting the cyclic life of an air-cooled turbine blade for a gas turbine aircraft engine. Structural analysis methods of various levels of sophistication were exercised to obtain the cyclic stress-strain response at the critical airfoil location. Calculated strain ranges and mean stresses from the stress-strain cycles were used to predict crack initiation lives by using the total strain version of the strain range partitioning life prediction method. The major results are given and discussed
The effects of leading edge and downstream film cooling on turbine vane heat transfer
The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils
Turbine airfoil film cooling
The experimental data obtained in this program gives insight into the physical phenomena that occur on a film cooled airfoil, and should provide a relevant data base for verification of new design tools. Results indicate that the downstream film cooling process is a complex function of the thermal dilution and turbulence augmentation parameters with trends actually reversing as blowing strength and coolant-to-gas temperature ratio varied. The pressure surface of the airfoil is shown to exhibit a considerably higher degree of sensitivity to changes in the film cooling parameters and, consequently, should prove to be more of a challenge than the suction surface in accurately predicting heat transfer levels with downsteam film cooling
Post-modernism's use and abuse of Nietzsche
I focus on Nietzsche's architectural metaphor of self-construction in arguing for the claim that postmodern readings of Nietzsche misunderstand his various attacks on dogmatic philosophy as paving the way for acceptance of a self characterized by fundamental disunity. Nietzsche's attack on essentialist dogmatic metaphysics is a call to engage in a purposive self-creation under a unifying will, a will that possesses the strength to reinterpret history as a pathway to "the problem that we are". Nietzsche agrees with the postmodernists that unity is not a pre-given, however he would disavow their rejection of unity as a goal. Where the postmodernists celebrate "the death of the subject" Nietzsche rejects this valorization of disunity as a form of Nihilism and prescribes the creation of a genuine unified subjectivity to those few capable of such a goal. Postmodernists are nearer Nietzsche's idea of the Last Man than his idea of the Overman.Articl
Infrared Emission from the Radio Supernebula in NGC 5253: A Proto-Globular Cluster?
Hidden from optical view in the starburst region of the dwarf galaxy NGC 5253
lies an intense radio source with an unusual spectrum which could be
interpreted variously as nebular gas ionized by a young stellar cluster or
nonthermal emission from a radio supernova or an AGN. We have obtained 11.7 and
18.7 micron images of this region at the Keck Telescope and find that it is an
extremely strong mid-infrared emitter. The infrared to radio flux ratio rules
out a supernova and is consistent with an HII region excited by a dense cluster
of young stars. This "super nebula" provides at least 15% of the total
bolometric luminosity of the galaxy. Its excitation requires 10^5-10^6 stars,
giving it the total mass and size (1-2 pc diameter) of a globular cluster.
However, its high obscuration, small size, and high gas density all argue that
it is very young, no more than a few hundred thousand years old. This may be
the youngest globular cluster yet observed.Comment: 6 pages, 2 color figures, Submitted to the ApJL, Revised 4/6/01 based
on referee's comment
Calculation of geometric phases in electric dipole searches with trapped spin-1/2 particles based on direct solution of the Schr\"odinger equation
Pendlebury [Phys. Rev. A , 032102 (2004)] were
the first to investigate the role of geometric phases in searches for an
electric dipole moment (EDM) of elementary particles based on Ramsey-separated
oscillatory field magnetic resonance with trapped ultracold neutrons and
comagnetometer atoms. Their work was based on the Bloch equation and later work
using the density matrix corroborated the results and extended the scope to
describe the dynamics of spins in general fields and in bounded geometries. We
solve the Schr\"odinger equation directly for cylindrical trap geometry and
obtain a full description of EDM-relevant spin behavior in general fields,
including the short-time transients and vertical spin oscillation in the entire
range of particle velocities. We apply this method to general macroscopic
fields and to the field of a microscopic magnetic dipole.Comment: 11 pages, 4 figure
Radio-frequency dressing of multiple Feshbach resonances
We demonstrate and theoretically analyze the dressing of several proximate
Feshbach resonances in Rb-87 using radio-frequency (rf) radiation. We present
accurate measurements and characterizations of the resonances, and the dramatic
changes in scattering properties that can arise through the rf dressing. Our
scattering theory analysis yields quantitative agreement with the experimental
data. We also present a simple interpretation of our results in terms of
rf-coupled bound states interacting with the collision threshold.Comment: 4+ pages, 3 figures, 1 table; revised introduction & references to
reflect published versio
- …