164 research outputs found

    Balancing openness with Indigenous data sovereignty: An opportunity to leave no one behind in the journey to sequence all of life

    Get PDF
    The field of genomics has benefited greatly from its "openness" approach to data sharing. However, with the increasing volume of sequence information being created and stored and the growing number of international genomics efforts, the equity of openness is under question. The United Nations Convention of Biodiversity aims to develop and adopt a standard policy on access and benefit-sharing for sequence information across signatory parties. This standardization will have profound implications on genomics research, requiring a new definition of open data sharing. The redefinition of openness is not unwarranted, as its limitations have unintentionally introduced barriers of engagement to some, including Indigenous Peoples. This commentary provides an insight into the key challenges of openness faced by the researchers who aspire to protect and conserve global biodiversity, including Indigenous flora and fauna, and presents immediate, practical solutions that, if implemented, will equip the genomics community with both the diversity and inclusivity required to respectfully protect global biodiversity

    Generations of interdisciplinarity in bioinformatics

    Get PDF
    Bioinformatics, a specialism propelled into relevance by the Human Genome Project and the subsequent -omic turn in the life science, is an interdisciplinary field of research. Qualitative work on the disciplinary identities of bioinformaticians has revealed the tensions involved in work in this “borderland.” As part of our ongoing work on the emergence of bioinformatics, between 2010 and 2011, we conducted a survey of United Kingdom-based academic bioinformaticians. Building on insights drawn from our fieldwork over the past decade, we present results from this survey relevant to a discussion of disciplinary generation and stabilization. Not only is there evidence of an attitudinal divide between the different disciplinary cultures that make up bioinformatics, but there are distinctions between the forerunners, founders and the followers; as inter/disciplines mature, they face challenges that are both inter-disciplinary and inter-generational in nature

    Inscribing a discipline: tensions in the field of bioinformatics

    Get PDF
    Bioinformatics, the application of computer science to biological problems, is a central feature of post-genomic science which grew rapidly during the 1990s and 2000s. Post-genomic science is often high-throughput, involving the mass production of inscriptions [Latour and Woolgar (1986), Laboratory Life: the Construction of Scientific Facts. Princeton, NJ: Princeton University Press]. In order to render these mass inscriptions comprehensible, bioinformatic techniques are employed, with bioinformaticians producing what we call secondary inscriptions. However, despite bioinformaticians being highly skilled and credentialed scientists, the field struggles to develop disciplinary coherence. This paper describes two tensions militating against disciplinary coherence. The first arises from the fact that bioinformaticians as producers of secondary inscriptions are often institutionally dependent, subordinate even, to biologists. With bioinformatics positioned as service, it cannot determine its own boundaries but has them imposed from the outside. The second tension is a result of the interdisciplinary origin of bioinformatics – computer science and biology are disciplines with very different cultures, values and products. The paper uses interview data from two different UK projects to describe and examine these tensions by commenting on Calvert's [(2010) “Systems Biology, Interdisciplinarity and Disciplinary Identity.” In Collaboration in the New Life Sciences, edited by J. N. Parker, N. Vermeulen and B. Penders, 201–219. Farnham: Ashgate] notion of individual and collaborative interdisciplinarity and McNally's [(2008) “Sociomics: CESAGen Multidisciplinary Workshop on the Transformation of Knowledge Production in the Biosciences, and its Consequences.” Proteomics 8: 222–224] distinction between “black box optimists” and “black box pessimists.

    Trends in utilization and costs of BRCA testing among women aged 18–64 years in the United States, 2003–2014

    Get PDF
    Purpose We examined 12-year trends in BRCA testing rates and costs in the context of clinical guidelines, national policies, and other factors. Methods We estimated trends in BRCA testing rates and costs from 2003 to 2014 for women aged 18–64 years using private claims data and publicly reported revenues from the primary BRCA testing provider. Results The percentage of women with zero out-of-pocket payments for BRCA testing increased during 2013–2014, after 7 years of general decline, coinciding with a clarification of Affordable Care Act coverage of BRCA genetic testing. Beginning in 2007, family history accounted for an increasing proportion of women with BRCA tests compared with personal history, coinciding with BRCA testing guidelines for primary care settings and direct-to-consumer advertising campaigns. During 2013–2014, BRCA testing rates based on claims grew at a faster rate than revenues, following 3 years of similar growth, consistent with increased marketplace competition. In 2013, BRCA testing rates based on claims increased 57%, compared with 11% average annual increases over the preceding 3 years, coinciding with celebrity publicity. Conclusion The observed trends in BRCA testing rates and costs are consistent with possible effects of several factors, including the Affordable Care Act, clinical guidelines and celebrity publicity

    The Nobel Prize as a Reward Mechanism in the Genomics Era: Anonymous Researchers, Visible Managers and the Ethics of Excellence

    Get PDF
    The Human Genome Project (HGP) is regarded by many as one of the major scientific achievements in recent science history, a large-scale endeavour that is changing the way in which biomedical research is done and expected, moreover, to yield considerable benefit for society. Thus, since the completion of the human genome sequencing effort, a debate has emerged over the question whether this effort merits to be awarded a Nobel Prize and if so, who should be the one(s) to receive it, as (according to current procedures) no more than three individuals can be selected. In this article, the HGP is taken as a case study to consider the ethical question to what extent it is still possible, in an era of big science, of large-scale consortia and global team work, to acknowledge and reward individual contributions to important breakthroughs in biomedical fields. Is it still viable to single out individuals for their decisive contributions in order to reward them in a fair and convincing way? Whereas the concept of the Nobel prize as such seems to reflect an archetypical view of scientists as solitary researchers who, at a certain point in their careers, make their one decisive discovery, this vision has proven to be problematic from the very outset. Already during the first decade of the Nobel era, Ivan Pavlov was denied the Prize several times before finally receiving it, on the basis of the argument that he had been active as a research manager (a designer and supervisor of research projects) rather than as a researcher himself. The question then is whether, in the case of the HGP, a research effort that involved the contributions of hundreds or even thousands of researchers worldwide, it is still possible to “individualise” the Prize? The “HGP Nobel Prize problem” is regarded as an exemplary issue in current research ethics, highlighting a number of quandaries and trends involved in contemporary life science research practices more broadly

    A collaboratively derived international research agenda on legislative science advice

    Get PDF
    The quantity and complexity of scientific and technological information provided to policymakers have been on the rise for decades. Yet little is known about how to provide science advice to legislatures, even though scientific information is widely acknowledged as valuable for decision-making in many policy domains. We asked academics, science advisers, and policymakers from both developed and developing nations to identify, review and refine, and then rank the most pressing research questions on legislative science advice (LSA). Experts generally agree that the state of evidence is poor, especially regarding developing and lower-middle income countries. Many fundamental questions about science advice processes remain unanswered and are of great interest: whether legislative use of scientific evidence improves the implementation and outcome of social programs and policies; under what conditions legislators and staff seek out scientific information or use what is presented to them; and how different communication channels affect informational trust and use. Environment and health are the highest priority policy domains for the field. The context-specific nature of many of the submitted questions—whether to policy issues, institutions, or locations—suggests one of the significant challenges is aggregating generalizable evidence on LSA practices. Understanding these research needs represents a first step in advancing a global agenda for LSA research.Fil: Akerlof, Karen. George Mason University; Estados UnidosFil: Tyler, Chris. University College London;Fil: Foxen, Sarah Elizabeth. University College London;Fil: Heath, Erin. American Association for the Advancement of Science; Estados UnidosFil: Gual Soler, Marga. American Association for the Advancement of Science; Estados UnidosFil: Allegra, Alessandro. University College London;Fil: Cloyd, Emily T.. American Association for the Advancement of Science; Estados UnidosFil: Hird, John A.. University of Massachussets; Estados UnidosFil: Nelson, Selena M.. George Mason University; Estados UnidosFil: Nguyen, Christina T.. George Mason University; Estados UnidosFil: Gonnella, Cameryn J.. Herndon; Estados UnidosFil: Berigan, Liam A.. Kansas State University; Estados UnidosFil: Abeledo, Carlos R.. Universidad de Buenos Aires; ArgentinaFil: Al Yakoub, Tamara Adel. Yarmouk University; JordaniaFil: Andoh, Harris Francis. Tshwane University Of Technology; Sudáfrica. Tshwane University of Technology; GhanaFil: dos Santos Boeira, Laura. Veredas Institute; BrasilFil: van Boheemen, Pieter. Rathenau Instituut; Países BajosFil: Cairney, Paul. University of Stirling; Reino UnidoFil: Cook Deegan, Robert. Arizona State University; Estados UnidosFil: Costigan, Gavin. Foundation For Science And Technology; Reino UnidoFil: Dhimal, Meghnath. Nepal Health Research Council; NepalFil: Di Marco, Martín Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Sociales. Instituto de Investigaciones "Gino Germani"; ArgentinaFil: Dube, Donatus. National University of Science and Technology; Zimbabu
    corecore