3,355 research outputs found

    Tracking ocean wave spectrum from SAR images

    Get PDF
    An end to end algorithm for recovery of ocean wave spectral peaks from Synthetic Aperture Radar (SAR) images is described. Current approaches allow precisions of 1 percent in wave number, and 0.6 deg in direction

    Performance Characteristics of a Cluster of 5-kW Laboratory Hall Thrusters

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76117/1/AIAA-19752-159.pd

    Motor sequence learning in children with recovered and persistent developmental stuttering: preliminary findings

    Get PDF
    PURPOSE: Previous studies have associated developmental stuttering with difficulty learning new motor skills. We investigated non-speech motor sequence learning in children with persistent developmental stuttering (CWS), children who have recovered from developmental stuttering (CRS) and typically developing controls (CON). METHODS: Over the course of two days, participants completed the Multi-Finger Sequencing Task, consisting of repeated trials of a10-element sequence, interspersed with trials of random sequences of the same length. We evaluated motor sequence learning using accuracy and response synchrony, a timing measure for evaluation of sequencing timing. We examined error types as well as recognition and recall of the repeated sequences. RESULTS: CWS demonstrated lower performance accuracy than CON and CRS on the first day of the finger tapping experiment but improved to the performance level of CON and CRS on the second day. Response synchrony showed no overall difference among CWS, CRS and CON. Learning scores of repeated sequences did not differ from learning scores of random sequences in CWS, CRS and CON. CON and CRS demonstrated an adaptive strategy to response errors, whereas CWS maintained a high percentage of corrected errors for both days. CONCLUSIONS: Our study examined non-speech sequence learning across CWS, CRS and CON. Our preliminary findings support the idea that developmental stuttering is not associated with sequence learning per se but rather with general fine motor performance difficulties

    Resilient distributed collection through information speed thresholds

    Get PDF
    Part 6: Large-Scale Decentralised SystemsInternational audienceOne of the key coordination problems in physically-deployed distributed systems, such as mobile robots, wireless sensor networks, and IoT systems in general, is to provide notions of “distributed sensing” achieved by the strict, continuous cooperation and interaction among individual devices. An archetypal operation of distributed sensing is data summarisation over a region of space, by which several higher-level problems can be addressed: counting items, measuring space, averaging environmental values, and so on. A typical coordination strategy to perform data summarisation in a peer-to-peer scenario, where devices can communicate only with a neighbourhood, is to progressively accumulate information towards one or more collector devices, though this typically exhibits problems of reactivity and fragility, especially in scenarios featuring high mobility. In this paper, we propose coordination strategies for data summarisation involving both idempotent and arithmetic aggregation operators, with the idea of controlling the minimum information propagation speed, so as to improve the reactivity to input changes. Given suitable assumptions on the network model, and under the restriction of no data loss, these algorithms achieve optimal reactivity. By empirical evaluation via simulation, accounting for various sources of volatility, and comparing to other existing implementations of data summarisation algorithms, we show that our algorithms are able to retain adequate accuracy even in high-variability scenarios where all other algorithms are significantly diverging from correct estimations

    Human larynx motor cortices coordinate respiration for vocal-motor control.

    Get PDF
    Vocal flexibility is a hallmark of the human species, most particularly the capacity to speak and sing. This ability is supported in part by the evolution of a direct neural pathway linking the motor cortex to the brainstem nucleus that controls the larynx the primary sound source for communication. Early brain imaging studies demonstrated that larynx motor cortex at the dorsal end of the orofacial division of motor cortex (dLMC) integrated laryngeal and respiratory control, thereby coordinating two major muscular systems that are necessary for vocalization. Neurosurgical studies have since demonstrated the existence of a second larynx motor area at the ventral extent of the orofacial motor division (vLMC) of motor cortex. The vLMC has been presumed to be less relevant to speech motor control, but its functional role remains unknown. We employed a novel ultra-high field (7T) magnetic resonance imaging paradigm that combined singing and whistling simple melodies to localise the larynx motor cortices and test their involvement in respiratory motor control. Surprisingly, whistling activated both 'larynx areas' more strongly than singing despite the reduced involvement of the larynx during whistling. We provide further evidence for the existence of two larynx motor areas in the human brain, and the first evidence that laryngeal-respiratory integration is a shared property of both larynx motor areas. We outline explicit predictions about the descending motor pathways that give these cortical areas access to both the laryngeal and respiratory systems and discuss the implications for the evolution of speech

    Nonmonotonic d_{x^2-y^2} Superconducting Order Parameter in Nd_{2-x}Ce_xCuO_4

    Full text link
    Low energy polarized electronic Raman scattering of the electron doped superconductor Nd_1.85Ce_0.15CuO_4 (T_c=22 K) has revealed a nonmonotonic d_{x^2-y^2} superconducting order parameter. It has a maximum gap of 4.4 k_BT_c at Fermi surface intersections with antiferromagnetic Brillouin zone (the ``hot spots'') and a smaller gap of 3.3 k_BT_c at fermionic Brillouin zone boundaries. The gap enhancement in the vicinity of the ``hot spots'' emphasizes role of antiferromagnetic fluctuations and similarity in the origin of superconductivity for electron- and hole-doped cuprates.Comment: 4 pages, 4 figure

    Nonanalytic behavior of the spin susceptibility in clean Fermi systems

    Get PDF
    The wavevector and temperature dependent static spin susceptibility, \chi_s(Q,T), of clean interacting Fermi systems is considered in dimensions 1\leq d \leq 3. We show that at zero temperature \chi_s is a nonanalytic function of |Q|, with the leading nonanalyticity being |Q|^{d-1} for 1<d<3, and Q^2\ln|Q| for d=3. For the homogeneous spin susceptibility we find a nonanalytic temperature dependence T^{d-1} for 1<d<3. We give qualitative mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative results for 1-d systems, as well as for the temperature dependence of \chi_s(Q=0) in d=3.Comment: 12pp., REVTeX, 5 eps figures, final version as publishe
    corecore