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Abstract. One of the key coordination problems in physically-deployed
distributed systems, such as mobile robots, wireless sensor networks, and
IoT systems in general, is to provide notions of “distributed sensing”
achieved by the strict, continuous cooperation and interaction among in-
dividual devices. An archetypal operation of distributed sensing is data
summarisation over a region of space, by which several higher-level prob-
lems can be addressed: counting items, measuring space, averaging en-
vironmental values, and so on. A typical coordination strategy to per-
form data summarisation in a peer-to-peer scenario, where devices can
communicate only with a neighbourhood, is to progressively accumulate
information towards one or more collector devices, though this typically
exhibits problems of reactivity and fragility, especially in scenarios fea-
turing high mobility. In this paper, we propose coordination strategies
for data summarisation involving both idempotent and arithmetic aggre-
gation operators, with the idea of controlling the minimum information
propagation speed, so as to improve the reactivity to input changes.
Given suitable assumptions on the network model, and under the re-
striction of no data loss, these algorithms achieve optimal reactivity.
By empirical evaluation via simulation, accounting for various sources
of volatility, and comparing to other existing implementations of data
summarisation algorithms, we show that our algorithms are able to re-
tain adequate accuracy even in high-variability scenarios where all other
algorithms are significantly diverging from correct estimations.

Keywords: Data Aggregation · Adaptive Algorithm · Aggregate Pro-
gramming · Computational Field · Gradient

1 Introduction

Nowadays physical environments are more and more filled with heterogeneous
connected devices (intelligent and mobile, such as smartphones, drones, robots).
These contexts increasingly call for new mechanisms of collective adaptation,
ultimately supporting a view of environments as acting as true pervasive com-
puting fabric, where sensing, actuation and computation are naturally seen as
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inherently resilient and distributed across physical space [16]. In this paper we
are concerned with the design of a self-adaptive coordination strategy able to
realise distributed sensing concerning physical properties of the environment or
virtual/digital characteristic of the computational one. By the strict cooperation
and interaction of dynamic sets of mobile entities situated in physical proximity,
distributed sensing can generally support forms of complex situation recognition
[18], better monitoring of physical environment [16], and observation (and then
control) of teams of agents [33]. In the context of coordination models and lan-
guages, field-based coordination [23,31,32] has been recently proposed as frame-
work to program increasingly complex self-organising coordination strategies for
such scenarios.

A paradigmatic coordination operation of distributed sensing is data sum-
marisation performed on devices filling a region of space: it is a key component on
top of which one can then realise other operations such as counting, integration,
averaging, maximisation, and the like. In fact, data summarisation corresponds
to the reduce phase of the MapReduce paradigm [19] ported into a “spatial”
context of agents spread in a physical environment and communicating by prox-
imity, and has close analogues designed for wireless sensor networks [29]. Data
summarisation can be solved by an algorithm of distributed collection, where
information propagates towards one or more collector devices, and combine en-
route until reaching a unique value, i.e, the result of collection. This compo-
nent of self-organising behaviour (sometimes named the “C” building block, in
short [30]), is one of the most basic and widely used components of collective
adaptive systems (CASs). Seen in terms of field-based coordination, collection is
essentially a distributed coordination algorithm that computes a specific case of
“computational field” [3,11], namely, a data structure distributed across space
such that each device holds only the local value—which, in the case of collection
represents a partial result of counting in a whole sub-region. This “brick” can
be applied to a variety of different contexts, as it can be instantiated for values
of any data type with an associative and commutative aggregation operator.

However, implementing C can be very tricky, especially in mobile and faulty
environments (i.e., with changes in the network of computational devices), which
are the norm in several emerging application contexts, including airborne sensing
by drones [15], crowd management by people smartphones [14], and vehicular
networks [25]: existing implementations based on heuristic reasoning (single-path
and multi-path [5,30]) tend to be very fragile in practice.

In this paper we present two new algorithms for effectively and efficiently
carrying on the computation of the C building block, based on a theoretical
approach backed up by simulation results, which is able to achieve adequate
accuracy in highly volatile scenarios. In the algorithm for idempotent aggrega-
tion (e.g. set union, maximum), as for existing multi-path collection algorithms,
data chunks flow through agents through many possible links of the underlying
proximity network. Which links to use are selected by imposing differentiated
thresholds on minimum information propagation speed, threshold which in turn
are set to the highest value ensuring that data is not discarded by all neighbours
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(under suitable assumptions on the network configuration). Instead, in the algo-
rithm for arithmetic aggregation (e.g. sum, product), data chunks flow through
a single outgoing link selected to ensure the maximum information propagation
speed in the worst-case scenario. In both arithmetic and idempotent aggrega-
tion, the algorithms chosen are designed to maximise the worst-case information
propagation speed under the given assumptions. Notice that which of the two
algorithms applies depends only on the problem at hand and not on the run-
time setup of a network. Thus, a system designer can decide which of the two
algorithms are to be exploited depending on the properties of the aggregation
operator only, and there is no overlap: arithmetic operators are never idempo-
tent.

We validate the performance of the algorithms in archetypal situations, tak-
ing into account agent mobility and discontinuities in network configuration, as
well as network size and density. Ultimately, by accounting for various sources of
volatility, using different state-of-the-art distance estimations, and comparing to
other existing implementations of aggregation algorithms, we show that these al-
gorithms are able to retain acceptable precision even in high-variability scenarios
where all other algorithms are significantly diverging from correct estimations.

The work of this paper is arguably a significant step in the context of engi-
neering CASs. In general, the proposed coordination algorithm can be used as
a solid component for engineering collection services in highly distributed and
mobile systems. On the other hand, in the specific context of field-based coor-
dination and aggregate computing framework [14], these algorithms provide an
implementation for the fundamental “C block” as advocated in [30], coupling
that of “G block” as of [6], and together forming a set of combinators effectively
supporting construction of higher-level, self-stabilising coordination strategies in
mobile distributed systems, such as e.g. the SCR pattern proposed in [17].

The remainder of this paper is organised as follows. Section 2 presents the
state-of-the-art in data summarisation techniques and necessary backgrounds.
Section 3 presents the algorithms together with the assumptions that ensure
achieving optimal reactivity. Section 4 compares these algorithms with the state-
of-the-art in archetypal scenarios particularly hard for summarising algorithms.
Finally, Section 5 concludes with directions of future research.

2 Background and Related Work

2.1 Computational Model

In aggregate programming [14], a distributed network consists of mobile devices,
capable to perform asynchronous computations and interacting by exchanging
messages. Every device performs periodically the same sequence of operations,
with an usually steady rate T : collection of received messages, computation, and
transmission of messages. The instants and places when and where devices start
their computation are called events ε, and constitute basic element modelling
the system evolution. Every event is a spatio-temporal point, happening on a



4 G. Audrito et al.

1

2

3

4

5

d
ev
ic
e

time

v c w t o

p l r u s d

q e v o

p m j b q o

n b u

Fig. 1. Representation of an event struc-
ture, together with literal values depend-
ing on events. Past events of event e (cir-
cled blue) are depicted in red, future events
in green, concurrent events in black.

device δ(ε) at a certain moment in time t(ε) and position in space p(ε). The
values manipulated by an aggregate program are distributed in space and evolve
in time, and can thus be represented as functions of events v(ε). Furthermore,
events are structured by the message-passing relation among them.

Definition 1 (neighbour). An event ε′ is a neighbour of an event ε, denoted
as ε′  ε, if a message sent by ε′ was the last from δ(ε′) able to reach δ(ε) before
ε occurred (and has not been discarded as obsolete since).

Note that, in an actual asynchronous distributed system, a device could fire
more frequently than another, hence multiple messages from a “fast” device could
reach a “slow” target before it can fire a new round: the above definition will
allow us to focus only on the latter received one. Similarly, no messages from a
“slow” device could reach a “fast” target during a round, and the above definition
allows to retain messages from such a slow device across rounds, increasing the
computation stability. Details on when messages are persisted or discarded are
not given in the definition, leaving them as a choice during system design.

The neighbouring relation on events forms a direct acyclic graph (DAG), since
it is time-driven and anti-symmetric (unlike spatial-only neighbouring which is
usually symmetric). The transitive closure of this relation defines the causality
partial order ≤, so that ε′ ≤ ε iff there exists a sequence of events ε′  . . . ε
connecting ε′ to ε. The causality relation defines which events constitute the past,
future or are concurrent to any given event. A set of events with a neighbouring
and causality relation is also called event structure3 (represented in Figure 1),
and provides a basis to formally define the behaviour of a distributed system. In
the remainder of this paper, we shall use the following quantities and primitives:

– the radius R within which communication succeeds;4

3 Event structures for Petri Nets are used to model a spectrum of possible evolutions
of a system, hence include also an incompatibility relation, discriminating between
alternate future histories and modelling non-deterministic choice. However, following
[21], we use event structures to model a “timeless” unitary history of events, thus
avoiding the need for an incompatibility relation.

4 In reality, the communication range of a node is very irregular. As suggested by
Zhou et al. [35], such an irregular radius can be bounded, justifying the usage of a
fixed quantity.
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– the device δ(ε) and time t(ε) in which event ε takes place;
– the time difference (lag) between neighbour events lag(ε′, ε) = t(ε)− t(ε);5
– the measured distance between neighbour events dist(ε′, ε), possibly affected

by errors.

The latter can be obtained in three main different ways, depending on the time
to which the two positions p′ and p involved refer to: (i) in GPS-based systems,
p′ is the position measured in t(ε′) and p is the position measured in t(ε); (ii)
if distance is sensed at message receival, both positions refer to t(ε′); (iii) if
distance can be sensed in every moment, then both positions may refer to t(ε).

Throughout the description of algorithms we will use the notation X(ε) to
represent a distributed value X depending on events, while Xε′(ε) will symbolize
a value depending on neighbouring relationships ε′  ε, that is, a quantity
computed in ε with respect to a neighbour event ε′.

2.2 Self-Stabilising Building Blocks

Recent works promoted an approach to engineer complex field-based coordi-
nation algorithms by combination of basic building blocks [30], capturing key
mechanisms of self-organisation such as spreading (block “G”), collection (block
“C”), time evolution (block “T”), leader election and partitioning (block “S”),
measuring centrality [7] and so on. For instance, self-organising coordination
regions can be developed by a S-G-C-G composition [17].

The most basic and versatile building block is called gradient (G block),
which provides distance estimation, creating a spanning tree and performing
broadcast operations. In particular, the potential field P (ε) of distances from a
source is a crucial input of every data aggregation routine (C block), providing
means to guide the direction of aggregation. Accurately computing distances in
a distributed and volatile scenario is a demanding task, which can be tackled
in different ways depending on the context. In spite of variations, the general
framework is that of gradient-based field computations [23,24], where local es-
timates from the source are repetitively shared with neighbours and combined
with proximity estimates of mutual distance.

If no proximity sensors are available, the harsh hop-count measure can be im-
proved through statistical tools [22], obtaining continuous and adaptive distance
estimates. Furthermore, even when a proximity sensor is available, reactivity
to input changes and network variability may be impaired by the rising value
problem6—simply, reaction to changes causing increase of distance is very low
[9]. Several solutions have been proposed to tackle this problem. Following re-
cent reviews of distance estimation algorithms [6,9] three solutions are shown to
always outperform basic algorithms: FLEX [12], BIS [8], and ULT [6].

FLEX is an algorithm aimed at maximising stability of values while contain-
ing the error within predictable bounds, which also addresses the rising value

5 Note that this quantity can be computed with reasonable accuracy even in absence
of a global clock [10].

6 Also known as the count to infinity problem in routing algorithms.
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problem by introducing a metric distortion. BIS, instead, exploits time infor-
mation in order to solve the rising value problem obtaining optimal single-path
reactivity to input changes, without concerns on value stability. ULT develops
on BIS by adding a stale values detector running at (faster) multi-path speed,
while addressing value stability with the addition of filters and dampers. Being
obtained by the integration of different methods, ULT is tuned by a large num-
ber of parameters, and can range to being almost identical to BIS (when filters
and dampers are disabled) to being closer to FLEX (when dampers are active).

2.3 Distributed Data Collection

Data collection (also called aggregation) is a key component of distributed al-
gorithms. It has been tacked in different ways depending on the application
context (like, e.g., wireless sensor networks [26,29], high-performance comput-
ing [19] and spatial computing [13]). Notably, all of these different approaches
rely on the same basic mechanisms. In data collection, distributed values are
combined together through an aggregation operator ⊕ that enjoys the following
properties:

1. commutativity : u⊕ v = v ⊕ u;
2. associativity : u⊕ (v ⊕ w) = (u⊕ v)⊕ w.

Provided that the above properties hold, the aggregation
⊕
C of the elements of

a multi-set C is well-defined (the order in which the individual elements are ag-
gregated is immaterial). Some common aggregation operators are the idempotent
operators maximum and minimum, and the arithmetic operators addition and
multiplication. Scenarios with intrinsic communication errors and input volatil-
ity (like, e.g., wireless sensor networks and spatial computing) require to consider
a further property:

3. continuity : the effect on the aggregation of a certain percentage p of errors
tends to zero as p tends to zero.

This property holds for the idempotent and arithmetic aggregation operators
cited above, however, it does not hold for other operations like, e.g., modular
sum: the modular addition of a single spurious element can fully disrupt the
outcome of the aggregation of an arbitrary big collection of elements.

In the context of an environment with proximity-based interactions, given
a commutative and associative operator, a data aggregation algorithm asyn-
chronously combines input values x(ε) from different devices into a single value
in a selected device called source (or collector). The algorithm manages the flow
of data towards the source to avoid multiple aggregation of the same values.
This twofold prerequisite, of acyclic flows directed towards the source, is met
by relying on a given potential field P (ε), approximating a certain measure of
distance from the selected source. As long as information flows descending the
potential field, cyclic dependencies are prevented and eventual reaching of the
source is guaranteed. For each event ε, potential descent is enforced by splitting
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Fig. 2. A collection field in a p2p
scenario that, by using single-path
aggregation, counts the number of
blue agents and collects the result
in the red agent. Each agent holds
a partial result of counting, based
on how many “single-path flows”
from blue agents to red agent cross
it. Connections are bidirectional,
and aggregation flows from smaller
to greater values.

the set of neighbours events Eε = {ε′ | ε′  ε} according to their potential value
into the two disjoint sets:

E−ε = {ε′ ∈ Eε | Pε′(ε) < P (ε)} and E+
ε = {ε′ ∈ Eε | Pε′(ε) > P (ε)} .

Thus, values can be received only from E+
ε and must be sent only to E−ε . Three

main algorithms implementing the collection block have been proposed so far:
single-path, multi-path and weighted multi-path, all scaling to arbitrarily large
systems as they require constant computational resources per node.

Single-path Aggregation. The single-path algorithm Csp ensures that in-
formation flows through a forest in the network, by sending the whole partial
aggregate Csp(ε) computed during event ε to the single neighbour m(ε) = ε′ with
minimum potential Pε′ among all neighbour events in Eε. This is accomplished
by repeatedly applying the following rule:

Csp(ε) = x(ε)⊕
⊕

ε′∈E+
ε ∧ δ(m(ε′))=δ(ε)

Csp(ε′) (1)

Equation 1 computes the partial aggregate in ε by combining together the local
input value x(ε) and the partial aggregates from direct predecessors ε′ with
higher potential for which δ(ε) is the selected device δ(m(ε′)). A screenshot of
this algorithm after convergence is reached is shown in Figure 2.

Since data flows descending the potential as fast as possible, single-path
aggregation attains optimal reactivity to input changes in static environments.
However, in mutable environments, the message from ε to m(ε) may be lost,
disrupting communication and pruning the entire branch of the forest rooted in
ε. This phenomenon translates into poor performances, provided that values far
from the source contribute significantly to the aggregation (e.g., non-zero values
for summation, high values for minimisation, and so on).

Multi-path Aggregation. The multi-path algorithm Cmp allows information
to flow through every path compatible with the given potential field. In order
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to avoid double counting, it is thus necessary to divide the partial aggregate
of an event ε equally among every event ε′ with lower potential, by iteratively
applying the following rule:

Cmp(ε) = x(ε)⊕
⊕
ε′∈E+

ε

{Cmp(ε′)�N(ε′)} (2)

where N(ε) = |E−ε | and � is a binary operator such that v� n means “dividing
by n”, i. e., an element that aggregated with itself n times produces the original
value v. Since information needs to be “divisible” for � to exist, two categories
of aggregation operators are supported:

1. arithmetic operations, e.g., point-wise sum and multiplication of vectors v ∈
Rn of real numbers (for which � is respectively division and root extraction);

2. idempotent operations, e.g., computation of maximum and minimum among
values v in a partially ordered set (for which � is the identity function).

Thus, theoretically, multi-path has a narrower scope than single-path. However,
the vast majority of practically occurring (continuous) aggregation operators
can be typically recast to be either arithmetic or idempotent. In particular,
idempotent operations have been used to emulate several different aggregations
through statistical tools: distinct count, sum, uniform sampling, selection of most
frequent values [26], and order statistics [34].

Since data flows through every possible path, it is unlikely for devices to be
excluded from the aggregation, thus preventing data loss. On the other hand, the
reactivity to input changes of multi-path aggregation is particularly poor. In fact,
even in static environments, values flow through every possible path including the
longest path, forcing reaction to changes to be delayed until all paths have been
exploited (in particular for idempotent operations), and resulting in a reaction
speed inversely proportional to the device density. In mutable environments,
the problem is further exacerbated by the creation of information loops, which
occur when two or more moving devices of similar potential invert their relative
potential order in consecutive rounds, causing information from a device δ to
come back to the same device, slowing down even further the reaction speed of
the algorithm, and inducing exponential overestimations in the arithmetic case.

Weighted Multi-path Aggregation. Recent works [4,5] develop on the multi-
path algorithm, by allowing partial aggregates to be divided unequally among
neighbours. Weights corresponding to neighbours are calculated in order to pe-
nalise devices that are likely to lose their “receiving” status, a situation that can
happen in two cases:

1. if the “receiving” device is too close to the edge of proximity of the “sending”
device, so that it might step outside of it in the immediate future breaking
the connection;

2. if the potential of the “receiving” device is too close to the potential of
the “sending” device, so that their relative role of sender/receiver might be
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switched in the immediate future, possibly creating an “information loop”
between the two devices.

Both situations are addressed by a weight function wε′(ε) = d(ε′, ε) · p(ε′, ε),
measuring how much of the information from ε should be sent to a neighbour
δ(ε′) as the product of the two corresponding factors d(ε′, ε) = R−dist(ε′, ε) and
p(ε′, ε) = |P (ε)− P (ε′)|, where R is the communication radius and dist(ε′, ε) the
distance measured between the events. Since these weights do not sum up to any
particular value, they need to be normalised by the factor N(ε) =

∑
ε′∈E−ε wε′(ε),

obtaining normalised weights wε′(ε)/N(ε′). The partial aggregates accumulated
by devices can then be calculated as in Cmp (see 2) with the addition of weights,
by iteratively applying the following rule:

Cwmp(ε) = x(ε)⊕
⊕
ε′∈E+

ε

{
Cwmp(ε′)⊗

wδ(ε)(ε
′)

N(ε′)

}
(3)

where ⊗ is a binary operator such that v⊗k “extracts” a certain percentage k of a
local value v.7 In particular, if⊕ is arithmetic (addition) then⊗ is multiplication,
whereas if ⊕ is idempotent then ⊗ is a threshold function regulating which links
should be exploited for transmission and which should be ignored.

This algorithm has been shown to significantly outperform both the single-
path and multi-path strategies, however, it is based on heuristics hence cannot
provide correctness guarantees: in fact, it produces exponentially growing peaks
of error for arithmetic aggregations in scenarios with high mobility [5].

3 Collection by Lossless Information Speed Thresholds

In this section, we present the Lossless Information Speed Thresholds collection
algorithm (Clist). It maximises information speed under the general assumptions
presented in Section 2.1 and the additional assumptions on the network model
given in Section 3.1, with respect to the algorithms satisfying the constraints
given in Section 3.2.

3.1 Network Model Assumptions

As for the other summarisation algorithms, we assume a potential field P (ε) to
be available as input in each event. Given an event ε, we denote as εnext the
following event on the same device, so that ε  εnext and δ(ε) = δ(εnext). In
order for Clist to be computed, we need a minimal degree of forecasting values
in next events εnext, as stated by the following assumptions.

– Sure connection. For each event ε and neighbour ε′, there is a Boolean value
surelyConnectedε′(ε) which is true iff ε is sure that its messages will be
received by the next event ε′next on δ(ε′), and is true for at least one neighbour

7 We also used the notation wδ(ε′) as alias of wε′′(ε
′) where δ(ε′′) = δ.
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event ε′. Such value can be computed using an upper bound on distance
dist(ε′, ε) together with a lower bound on connection radius R and possibly
an upper bound V on device movement speed, as in the following:

maxDistNow(ε′, ε) = dist(ε′, ε) + kV lag(ε′, ε) (4)

surelyConnectedε′(ε)⇔ maxDistNow(ε′, ε) ≤ R (5)

where k is 0 if dist refers to t(ε), 1 if it refers to both t(ε′) and t(ε) (GPS-
based), 2 if it refers to t(ε′) (see Section 2.1).

– Scheduled time. For each event ε, we assume that an upper bound tu(ε) to
t(εnext) is known. Notice that this is easily satisfied with high accuracy, as
activations need to be scheduled and do not happen randomly.

– Potential evolution. For each event ε, we assume that an upper bound Pu(ε)
to P (εnext) is known. For instance, given the upper bound V on device
movement speed, we may set Pu(ε) = P (ε) + V · (tu(ε)− t(ε)). This bound
may need to be corrected for the error on potential computations, and could
be significantly improved if the movement direction is known.

3.2 Algorithmic Constraints

Under the previous assumptions, we focus on collection algorithms satisfying the
following constraints.

– Lossless. A collection algorithm is lossless if it ensures that the input value
x(ε) in any event participates in the outcome C(ε′) of the algorithm for at
least one event ε′ on the collection source (that is, such that P (ε′) = 0).

– Scalable. We say that a distributed algorithm is scalable if it uses O(1) mes-
sage size and O(N) computation time and space in every event ε, where N
is the number of neighbours N = |Eε|.

3.3 Idempotent Aggregation

In the idempotent case data duplication is not an issue, and thus data loss can
be easily avoided by resorting to a multi-path algorithm. However, as we will
see in Section 4.1, plain multi-path is slow in recovering to the point of being
effectively equivalent to a gossip algorithm [20]. We thus propose an algorithm
that adopts intermediate strategy (as in previous heuristic-based attempts [4,5]),
which transmits data on a selected set of links, maximising the speed of infor-
mation flow v (measured as units of potential descended over time) under the
assumptions on the network model illustrated in Section 3.1. In fact, by discard-
ing for every starting event ε the longer paths towards the source and preserving
the shortest ones, we ensure that old information is quickly discarded, thus al-
lowing the algorithm to promptly adjust to input changes.

Notice that it is not possible for a scalable algorithm to select paths for their
overall information speed v, since partial results would not be locally computable
in intermediate events. Given the candidate values i reaching a same event with
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a potential descended of ∆Pi and a time elapsed of ∆ti, we need to select a
constant-sized subset of them, without knowing the additional time ∆t needed
to reach the source, and thus the overall speed that each candidate may achieve.
Thus, we indirectly select paths by imposing speed constraints in each one of
their edges.

Given a potential field P (ε) of distances from the source, we compute a
threshold speed θ(ε) for each event ε, so that a message ε ε′ is discarded iff:

v(ε, ε′) =
P (ε)− P (ε′)

t(ε′)− t(ε)
< θ(ε) (6)

that is, the information from ε to ε′ is descending the potential at a speed lower
than the threshold θ(ε) computed in ε. We allow these thresholds to depend on
the event, as a fixed global threshold can easily induce loss of data for large
parts of the network. Furthermore, we compute these thresholds as the maximal
(in order to prune the most paths possible) granting that at least one neighbour
will not discard the message (lossless algorithm).

In order to compute these thresholds efficiently and effectively, we base on the
network model assumptions in Section 3.1. For each event ε, we need to prevent
at least one of the neighbour events ε′  ε for which surelyConnectedε′(ε) is
true from discarding the message. We then use Pu(·) and tu(·) to predict a lower
bound on the speed of the information flowing from ε to ε′next:

v(ε, ε′next) =
P (ε)− P (ε′next)

t(ε′next)− t(ε)
≥ P (ε)− Pu(ε′)

tu(ε′)− t(ε)
= vwst

ε′ (ε) (7)

Thus, the maximum threshold ensuring no data loss is the following:8

θ(ε) = max
{
vwst
ε′ (ε) : surelyConnectedε′(ε) = >

}
(8)

The partial aggregates accumulated by devices can then be calculated by itera-
tively applying the following rule:

Clist(ε) = x(ε)⊕
⊕
ε′∈Eε

{
Clist(ε

′) : v(ε′, ε) =
P (ε)− P (ε′)

t(ε)− t(ε′)
≥ θ(ε′)

}
(9)

The algorithm Clist, globally defined by eqs. (7) to (9), computes the partial
aggregate associated with event ε by combining together the local value x(ε) and
the partial aggregates from direct predecessors ε′ for which the true information
speed v(ε′, ε) was above the threshold computed in the previous events θ(ε′).
Although every event computes the threshold by maximising the expected future
information speed, and thus choosing a neighbour that theoretically guarantees
the best speed, Clist is not a single-path algorithm: messages ε ε′next can flow
at speed greater than the estimated vwst

ε′ (ε) (defined in Equation (7)) and thus
pass the threshold even though the threshold was not designed for them.

According to the above explanation, the following property holds.

8 If no neighbour satisfies surelyConnectedε′(ε), the no-data-loss requirement is not
satisfiable and the threshold is set to −∞, thus falling back to a gossip algorithm.
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Property 1 (Clist local optimality among lossless collection algorithms). Let θ(ε)
be such that using information available in an event ε it is possible to guarantee
a lowest speed of information exiting ε of at least θ(ε) without data loss. Then
the lowest speed of information exiting ε for Clist is at least θ(ε).

3.4 Arithmetic Aggregation

In the arithmetic case, the situation is made more challenging by the necessity of
avoiding data duplication, which can in this case lead to exponentially increasing
overestimates. In order to avoid it, we modify Clist to become a purely single-path
algorithm,9 although the main structure remains the same. Based on eqs. (6)
to (8), we choose a selected neighbour m(ε) maximising vwst

m(ε)(ε):
10

m(ε) ∈
{
ε′ ∈ Eε : surelyConnectedε′(ε) = > ∧ vwst

ε′ (ε) = θ(ε)
}

(10)

Partial aggregates can then be accumulated as in Csp (see 1):

Clist(ε) = x(ε)⊕
⊕

ε′∈Eε∧ δ(m(ε′))=δ(ε)

Clist(ε
′) (11)

Thus, the Clist algorithm for arithmetic aggregation computes partial aggregates
by combining together the local value x(ε) and the partial aggregates from direct
predecessors ε′ for which δ(ε) was the selected device δ(m(ε′)).

4 Experimental Evaluation

We compared the new algorithm against reference single-path, multi-path and
weighted multi-path implementations (sp [30], mp [30], wmp [5]). The algorithms
were implemented in Protelis [28], which is an implementation of the field cal-
culus [11] universal language for field-based computations [3]. In particular, the
extension of the field calculus with the share operator was used [2] in order to
ensure maximal efficiency.

The potential estimates guiding aggregation were computed using the state-
of-the-art algorithm BIS introduced in [8] (see Section 2.2) ensuring theoretically
optimal recovery speed. We also tested the usage of an exponential back-off filter
to stabilise the collection results: however, we report in the following graphs only
its usage for list on arithmetic aggregation, since it was the only case where it
had a positive effect. For both the idempotent and arithmetic case, the same
archetypal scenarios were selected according to the guidelines developed in [9].
The scenarios consisted of a variable number of devices with almost identical
computation rate (1% systematic and accidental error) and unit disc communi-
cation model, randomly distributed in a circular area with a source device on

9 We also need to guarantee that a message from an event ε is not able to reach more
than one event on a same device, that is, messages are not retained across rounds.

10 If no neighbour satisfies surelyConnectedε′(ε), the no-data-loss requirement is not
satisfiable and we select the neighbour m(ε) minimising the probability of data loss.
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the right end of the circle at simulation start, then discontinuously moved to
the left end. Devices were moving at constant speed through randomly selected
waypoints within the area. The scenarios were tested varying the three funda-
mental characteristics of such a network (all normalised in order to abstract from
a specific communication radius or computation rate):

Hop diameter: the diameter of the circular area where devices are randomly
displaced, measured as the number of communication radiuses (hops) con-
tained. Values from 2 to 16 were considered (with a step of 1), using 10 when
evaluating the other characteristics.

Neighbourhood size: the average number of devices in a communication ra-
dius area. Values from 5 to 40 were considered (with a step of 2.5), using 25
when evaluating the other characteristics.

Device speed: the movement speed of devices, measured as a percentage of
the communication radius area covered during one computation round. Val-
ues from 0 to 50% were considered (with a step of 2.5%), using 25% when
evaluating the other characteristics.

For each of the resulting 49 different scenarios, 10 runs with different random
seeds were performed, averaging the results.11 The default values (10 hops, 25
neighbours, 25% speed) were chosen after a broader search in the parameter
space, as they were good representatives of the behaviour for most considered
parameter values. The simulations were obtained with Alchemist as simulator
[27] and the supercomputer OCCAM [1] as platform.12

4.1 Idempotent Aggregation

We tested collection for idempotent operators by setting ⊕ = min and values to
be aggregated chosen to make the aggregation as difficult as possible, showcasing
every possible source of error. In fact, a difficult idempotent aggregation problem
requires both obsolete and distant values to be able to significantly contribute to
the aggregation. If obsolete values have a negligible impact, multi-path collection
is optimal as it does not need to react to environmental changes. If distant values
have a negligible impact, single-path collection is optimal since even a small
coverage of the network may be sufficient.

In order to maximise the impact of distant values, we selected a set X of
devices at the opposite border of the circular area with respect to the active
source. Devices in X transmit a changing value which will be the result of the
aggregation, while devices outside X have a fixed high value (set to 400) which is
never the minimum. In order to showcase the impact of obsolete data, the values
transmitted in X were changing in time according to the following sinusoidal-like
function (see Figure 3 for a graphical depiction):

x(ε) = min(max(A cos(2π(min(t(ε), 300) + φ)/T ),−M),M)

11 As the variance between the runs for arithmetic aggregation was significantly high,
data was aggregated with median instead of mean.

12 The actual code experiment is available at https://bitbucket.org/gaudrito/

experiment-optimal-collection.

https://bitbucket.org/gaudrito/experiment-optimal-collection
https://bitbucket.org/gaudrito/experiment-optimal-collection
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Fig. 3. Idempotent aggregation through different algorithms (sp=single-path,
mp=multi-path, wmp=weighted multi-path, list=lossless information speed thresholds).
Aggregation results are shown for a single run (top right) and averaged among 10 runs
(top left) and hops = 10, neigh = 25, speed = 25. Aggregation error is shown for
varying speed, hops and neigh, averaged among 10 runs and 400 simulated rounds
(bottom).

where t(ε) is the time elapsed from the start of the simulation, A = 300 is the
amplitude, T = 250 is the period, φ = −25 is the phase, with values capped to
stay within ±M = ±220. Furthermore, at the time t = 300 of source switch, x(ε)
becomes a constant equals to 220. This allows to see behaviour in all possible
conditions: after a disruption, under steady inputs, and when input rises or
drops.

Figure 3 summarises the evaluation results. Single-path proves to be unable
to properly collect values from X in most situations except for some short time
intervals, thus showing extreme variability in results, except when the number
of hops is small, neighbourhood sizes are high and devices speeds are low. Multi-
path produces very good results until t = 200, but is unable to recover when
the input rises (not even after a source change), in fact behaving as a gossip
algorithm, except for small networks with low density and speeds. Weighted
multi-path performs quite well in all configurations, but is outperformed by list
in all cases except for very high speeds (> 40%). At such high speeds, avoiding
information losses forces list to choose a pessimistically low threshold, that could
be significantly higher while keeping a low (but non-zero) probability of loss.
Finally, notice that the source switch has a minimal impact on all algorithms for
idempotent aggregations.
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Fig. 4. Arithmetic aggregation through different algorithms (sp=single-path,
mp=multi-path, wmp=weighted multi-path, list=lossless information speed thresholds
with/without filter). Aggregation results are shown for a single run (top right) and av-
eraged among 10 runs (top left) and hops = 10, neigh = 25, speed = 25. Aggregation
error is shown for varying speed, hops and neigh, averaged among 10 runs and 400
simulated rounds (bottom).

4.2 Arithmetic Aggregation

We tested collection for arithmetic operators by setting ⊕ = + and values x(ε) =
1 for each device. This choice amounts to counting the total number of devices,
which is a commonly used routine and a paradigmatic example of arithmetic
aggregation. We run 10 instances of each scenario and computed median results,
as the relative standard errors between runs were significantly high: Figure 4
summarises the evaluation results.

The single-path (sp) and multi-path (mp) algorithms score the worst results.
Single-path underestimates the ideal value by a factor of 10 at all speeds above
5%, error that gets worse as the total number of devices increases (both by hops
or neigh), showing the existence of an upper bound to the number of devices that
are able to reach the source. Conversely, multi-path significantly overestimates
the ideal value with errors that grow approximately linearly with the number of
hops or neighbours, and exponentially with speed. Weighted multi-path, shows
a behaviour similar to multi-path but with a lower error: in particular, unlike
mp, the error decreases as the number of neighbours increases, showing better
performance in high density scenarios. Finally, list scores the best performance
in every scenario, only slightly underestimating the ideal value, with an error
that tends to zero as the number of neighbors increases, and is reasonably small
(below 10%) even for speeds around 30%. Unlike for the other algorithms, adding
an exponential back-off filter further improves the performance.
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Notice that the source switch at t = 300 has the effect of disrupting the ag-
gregation process for a short period of time, during which the algorithms show
some positive (for multi-path based algorithms mp, wmp) or negative peaks
(for single-path based algorithms sp, list). The recovery time after the switch is
similar across algorithm, although the positive peaks are larger in size (overes-
timating the value by about 3 orders of magnitude). As shown in Figure 4 (top
right), mp and wmp are always highly unstable, with peak overestimations of
5×; while sp and list have a more contained (while still significant) degree of
instability.

5 Contributions and Future Work

In this paper, we presented two new algorithms tackling the established problem
of data summarisation, both for idempotent and arithmetic operations. These
algorithms are designed to maximise the speed of information flow (which trans-
lates into reactiveness to input changes) under the constraint of no data loss. We
evaluated these algorithms in archetypal scenarios of maximal hardness, varying
all fundamental (dimensionless) characteristics of a distributed network: diam-
eter in hops, average number of neighbours, and node speed (relative to the
ratio between communication radius and computation period). Overall, these
algorithms significantly outperform the state-of-the-art, obtaining sound results
even in scenarios with high mobility.

However, there is still some margin of future improvement. In very high
mobility settings, the no-data-loss constraint forces our algorithms to an overly
pessimistic behaviour, thus losing performance with respect to heuristic (lossy)
techniques. In this case, future algorithms enforcing a relaxed constraint of a
maximum expected percentage of data loss may allow for a more effective choice
of the thresholds. Furthermore, our algorithms rely on a rough prediction of
quantities (time and potential) across rounds: future work may directly address
the prediction step, as more accurate predictions will directly translate into
higher information speed thresholds, and thus reactiveness.
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