526 research outputs found

    Barrier formation at metal/organic interfaces: dipole formation and the Charge Neutrality Level

    Full text link
    The barrier formation for metal/organic semiconductor interfaces is analyzed within the Induced Density of Interface States (IDIS) model. Using weak chemisorption theory, we calculate the induced density of states in the organic energy gap and show that it is high enough to control the barrier formation. We calculate the Charge Neutrality Levels of several organic molecules (PTCDA, PTCBI and CBP) and the interface Fermi level for their contact with a Au(111) surface. We find an excellent agreement with the experimental evidence and conclude that the barrier formation is due to the charge transfer between the metal and the states induced in the organic energy gap.Comment: 7 pages, Proceedings of ICFSI-9, Madrid, Spain (September 2003), special issue of Applied Surface Science (in press

    The effects of interface morphology on Schottky barrier heights: a case study on Al/GaAs(001)

    Full text link
    The problem of Fermi-level pinning at semiconductor-metal contacts is readdressed starting from first-principles calculations for Al/GaAs. We give quantitative evidence that the Schottky barrier height is very little affected by any structural distortions on the metal side---including elongations of the metal-semiconductor bond (i.e. interface strain)---whereas it strongly depends on the interface structure on the semiconductor side. A rationale for these findings is given in terms of the interface dipole generated by the ionic effective charges.Comment: 5 pages, latex file, 2 postscript figures automatically include

    Стабилизация движения робота по показаниям электронного компаса

    Get PDF
    Laser-induced breakdown spectroscopy has been applied to polymer samples in order to investigate the possibility of using this method for the identification of different materials. The plasma emission spectra of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyvinyl chloride (PVC), polyethylene terephthylene (PET), and polypropylene (PP) have been studied. Spectral features have been measured - for example, the 725.7 nm chlorine line, the 486.13 mm H(?) line, and the 247.86 nm carbon line - whose evaluation with neural networks permits identification accuracies between 90 and 1 00 per cent, depending on polymer type

    THE IMPROVED SWEEP METAHEURISTIC FOR SIMULATION OPTIMIZATION AND APPLICATION TO JOB SHOP SCHEDULING

    Get PDF
    We present an improved sweep metaheuristic for discrete event simulation optimization. The sweep algorithm is a tree search similar to beam search. The basic idea is to run a limited number of partial solutions in parallel and to search for solutions by searching the partial solutions. Traditionally, simulation optimization is carried out by multiple simulation runs executed sequentially. In contrast, the sweep algorithm executes multiple simulation runs simultaneously. It uses branching and pruning simulation models to carry out optimization. We describe new components of the algorithm, such as backtracking and local search. Then, we compare our approach with 13 metaheuristics in solving job shop scheduling benchmarks. Our approach ranks in the middle of the comparison which we regard as a success. The general nature of tree search offers a large array of sequential decision applications for the sweep algorithm, such as resource-constrained project scheduling, traveling salesman, or (real-time) production scheduling.

    Surface versus bulk characterization of the electronic inhomogeneity in a VO_{2} film

    Full text link
    We investigated the inhomogeneous electronic properties at the surface and interior of VO_{2} thin films that exhibit a strong first-order metal-insulator transition (MIT). Using the crystal structural change that accompanies a VO_{2} MIT, we used bulk-sensitive X-ray diffraction (XRD) measurements to estimate the fraction of metallic volume p^{XRD} in our VO_{2} film. The temperature dependence of the pXRD^{XRD} was very closely correlated with the dc conductivity near the MIT temperature, and fit the percolation theory predictions quite well: σ\sigma \sim (p - p_{c})^{t} with t = 2.0±\pm0.1 and p_{c} = 0.16±\pm0.01. This agreement demonstrates that in our VO2_{2} thin film, the MIT should occur during the percolation process. We also used surface-sensitive scanning tunneling spectroscopy (STS) to investigate the microscopic evolution of the MIT near the surface. Similar to the XRD results, STS maps revealed a systematic decrease in the metallic phase as temperature decreased. However, this rate of change was much slower than the rate observed with XRD, indicating that the electronic inhomogeneity near the surface differs greatly from that inside the film. We investigated several possible origins of this discrepancy, and postulated that the variety in the strain states near the surface plays an important role in the broad MIT observed using STS. We also explored the possible involvement of such strain effects in other correlated electron oxide systems with strong electron-lattice interactions.Comment: 27 pages and 7 figure

    АСР процесса горения в топке котла при реализации безмазутной растопки

    Get PDF
    In the last years laser-induced breakdown spectroscopy was introduced in various industrial applications. Automated inspection machines were developed capable to operate under harsh ambient conditions. As an example laser-induced breakdown spectroscopy-based inspection machines for the identification testing of fittings and tubes made of high-alloy steel will be presented. Within an inspection time of 2 seconds 100 spectra are gained yielding the signals of 12 elemental lines to identify more than 30 different high-alloy steel grades in order to prevent material mix-ups at the end of a production line prior to packaging and dispatch. More than 1.5 million products have been inspected within the last 5 years in routine operation. Requirements, concepts and design of such machines will be discussed considering the issues on analytical resolution and system monitoring. For the first time a data set of more than 10(exp 8) laser-induced breakdown spectroscopy measurements has become available, giving insight into the long-term behavior of the system performance. First evaluations of this data demonstrate the influence of laser power, sample position and temperature on the spectroscopic signals and the system state. Future demands on next-generation inspection machines based on laser-induced breakdown spectroscopy will be defined

    A SIMULATION BASED SCHEDULING MODEL FOR CALL CENTERS WITH UNCERTAIN ARRIVAL RATES

    Get PDF
    In this paper we develop a two stage algorithm for scheduling call centers with strict SLAs and arrival rate uncertainty. The first cut schedule can be developed in less than a minute using a constructive heuristic. The schedule is then refined via a simulation based optimization approach. We find that when allowed to run for five minutes or less this two stage process can create a schedule with a total expected cost within a few percentage points of schedules generated using much more computationally intensive methods. This rapid scheduling process is designed to support front line managers who wish to evaluate multiple scheduling options in a what if analysis mode

    CONCEPTUAL MODELLING: KNOWLEDGE ACQUISITION AND MODEL ABSTRACTION

    Get PDF
    Conceptual modelling has gained a lot of interest in recent years and simulation modellers are particularly interested in understanding the processes involved in arriving at a conceptual model. This paper contributes to this understanding by discussing the artifacts of conceptual modelling and two specific conceptual modelling processes: knowledge acquisition and model abstraction. Knowledge acquisition is the process of finding out about the problem situation and arriving at a system description. Model abstraction refers to the simplifications made in moving from a system description to a conceptual model. Soft Systems Methodology has tools that can help a modeller with knowledge acquisition and model abstraction. These tools are drawing rich pictures, undertaking analyses ‘one’, ‘two’, ‘three’, and constructing a root definition and the corresponding purposeful activity model. The use of these tools is discussed with respect to a case study in health care.

    A FLEXIBLE AND SCALABLE EXPERIMENTATION LAYER

    Get PDF
    Modeling and simulation frameworks for use in different application domains, throughout the complete development process, and in different hardware environments need to be highly scalable. For achieving an efficient execution, different simulation algorithms and data structures must be provided to compute a concrete model on a concrete platform efficiently. The support of parallel simulation techniques becomes increasingly important in this context, which is due to the growing availability of multi-core processors and network-based computers. This leads to more complex simulation systems that are harder to configure correctly. We present an experimentation layer for the modeling and simulation framework JAMES II. It greatly facilitates the configuration and usage of the system for a user and supports distributed optimization, on-demand observation, and various distributed and non-distributed scenarios.
    corecore