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ABSTRACT

Modeling and simulation frameworks for use in different

application domains, throughout the complete development

process, and in different hardware environments need to

be highly scalable. For achieving an efficient execution,

different simulation algorithms and data structures must be

provided to compute a concrete model on a concrete platform

efficiently. The support of parallel simulation techniques

becomes increasingly important in this context, which is

due to the growing availability of multi-core processors

and network-based computers. This leads to more complex

simulation systems that are harder to configure correctly.

We present an experimentation layer for the modeling and

simulation framework JAMES II. It greatly facilitates the

configuration and usage of the system for a user and sup-

ports distributed optimization, on-demand observation, and

various distributed and non-distributed scenarios.

1 INTRODUCTION

An experiment is the process of extracting data from a

system by its inputs. This might include a series of trials

with varying inputs. A simulation is an experiment with

a model, or more precisely an execution of a model with

concrete parameters. Hence, an experiment with a model

usually consists of several simulation runs. Setting up

an experiment typically comprises a multitude of steps,

e.g., model selection, initialization, defining the observers,

selecting the simulation engine, storing results, defining

constraints for repetition, to name only a few. The more

flexibility a simulation environment provides, the larger the

degree of freedom the user has in setting up an experiment.

For reliable simulation results, it is also mandatory

that experiments are repeatable. Thus, a crucial task of an

experimentation layer is to ensure that all information for

repeating an experiment is stored. As the degree of freedom

offered by the system increases, fulfilling this requirement

gets ever more challenging. With scalability we refer to

this degree of freedom and the possibilities supported by

the simulation framework to readily extend it. Thereby, we

deviate from the usual notion of scalability in simulation

as referring to one particular dimension, i.e., the ability of

a simulation system to gracefully handle growing models

of one type (which often coincides with limiting parallel

processing overhead for large-scale applications, see Nicol

et al. 2003).

In this sense, experimental layers of modeling and sim-

ulation environments that have been designed to conduct

single experiments (Minar et al. 1996) or to evaluate individ-

ual simulation algorithms (e.g., Perumalla 2005) offer little

reusability and scalability, although their simulation engine

might do so. Being bound to single execution platforms

(e.g., single machines, cluster, grids) or being restricted

to single formalisms/languages, simulation algorithms, and

data structures limits the scalability of the experimenta-

tion layer. Thus, a scalable simulation engine, as proposed

by (Nicol 1998), is a key pre-requisite but not sufficient

for realizing the scalable experimentation layer we have in

mind.

What is the benefit of such an experimentation layer?

A multitude of experiments is typically executed during

the life-time of a model. The first experiments serve to

explore the model, e.g., to optimize parameters, followed

by experiments aimed at its validation, and finally the “real”

experiments are conducted (Balci 2003). So the purposes

– and thus, the types of experiments – even vary if we

only have one model and one simulation engine. However,

different simulation algorithms are required to ensure that

the results to be interpreted are not biased by simulation

algorithm artifacts (Edmonds and Hales 2003). Different

application areas ask for different modeling formalisms, and

different questions about the same system might only be

answered by different models in different formalisms.

As already mentioned, the scalability of the experimen-

tal layer depends on the scalability of the simulation layer.

The availability of parallel computing machines is constantly

increasing, in the large (e.g., grid-based approaches) as well
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Figure 1: Framework controlled experiment execution

as in the small (e.g., multi-core processors), and with it the

interest in this type of scalable simulation engines (Fujimoto

2007). With JAMES II, our first concern has also been to

develop such a scalable simulation engine (Himmelspach

and Uhrmacher 2004). By realizing a plug’n simulate con-

cept, the user has gained further degrees of freedom in

executing experiments and in evaluating new methodolog-

ical concepts (Himmelspach and Uhrmacher 2007b). This

concept is also used in developing the experimentation layer,

so that scalability remains manageable for the user.

2 BACKGROUND

Different applications, created by different users in differ-

ent modeling formalisms and languages, require a flexible

environment – or the existence of a number of usable and

maintained alternatives. Applications may range from small

ones (e.g., a typical Lotka-Voltera model) up to large scale

models (e.g., climatic changes in the world).

The purpose of a modeling and simulation environ-

ment is to conduct experiments with models. The term

“experiment‘” is therefore a notion of central importance.

An “experiment” is defined by Cellier as “the process of

extracting data from a system by excerpting it through its

inputs.” (Cellier 1991, page 4). Further on, we understand

simulation as “an experiment performed on a model” (Korn

and Wait (1978) after Cellier 1991, page 6). According to

these definitions, an experiment is the central concept in

such an environment.

2.1 JAMES II

The simulation framework JAMES II is a very lean system

consisting of a set of core classes. The core of the simulation

framework JAMES II is the central and most rarely changed

part of the framework. The base for a scalable modeling and

simulation framework is laid in the core. The main parts

are: User interface, Data, Model, Simulator, Simulation,

Experiment, and Registry. According to the previously given

definition of an experiment, the Experiment package is

central in the design of JAMES II (see Figure 1).

We used common software engineering techniques

for the creation of the framework, e.g., the model-view-

controller paradigm for decoupling its parts (Gamma et al.

1994). Another important design decision was to split

model and simulation code completely. Thus, a simula-

tor can access the interface of a model class but a model

class is never allowed to access something in a simulator

class. This makes it possible to switch the simulation engine

(even during runtime) and to exchange the data structures

used for the executable models – an essential feature for a

scalable framework. In addition, this adds the possibility

to use JAMES II for reliable evaluations of new simula-

tion algorithms. In combination with an XML-based model

component plug-in, this flexibility enables the freedom of

choice in regards to model data type, simulator code (al-

gorithm as such; or sub-algorithms, e.g., event queues),

visualization, and runtime environment. The architecture is

sketched in Figure 2. The layers depict the distance of a

user from the packages.
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Figure 2: Packages of the simulation framework JAMES II

Extension points The “Plug’n simulate” approach (Him-

melspach and Uhrmacher 2007b) has been developed for

supporting, on the one hand, a variety of solutions which

may be provided by third parties and, on the other hand,

for enabling types of plug-ins yet unforeseen. Function-

ality not included in the core classes, especially modeling

formalisms and simulation algorithms, can be extended by

using plug-ins. The scalability of JAMES II relies on these

extension points as well as on the availability of extensions

for these. Extensions points in the core are, e.g., different

modeling formalisms & languages.

2.2 Different users and interests

Different user groups may have completely different moti-

vations for using modeling and simulation, e.g., teaching,

exploration, validation, testing, optimization, or the eval-

uation of new algorithms. In addition they may have a

different background – e.g., in regards to mathematics and

modeling and simulation methodology. The usability of a

system for different users is directly coupled to a barrier-free

user interface and the support of an “intuitive” modeling

formalism or language (from a specific user perspective).

Even though this is not new, many simulation environments

still only ship with one fixed user interface. JAMES II only

provides a small user interface for basic tasks, and users

are not condemned to use it. It may be completely replaced

by another one (which allows, e.g., to integrate JAMES II

seamlessly into other applications), and new user interfaces

(or parts thereof) may be built upon the existing interface

framework. Therefor the basic user interface employs the

plug’n simulate scheme of JAMES II as well – e.g., different

model editors can be integrated as plug-ins.
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2.3 Different modeling formalisms & languages

The plethora of modeling formalisms nowadays imposes

new challenges for developers of modeling and simulation

environments. Most often developers have to decide which

modeling formalism they are going to support, cutting off

the majority of potential users. This is due to the circum-

stance that different modeling formalisms have different

features, which eases the modeling of specific systems.

Plug-ins for several modeling formalisms are available for

JAMES II, among them Beta-binders, cellular automata,

PDEVS, PdynDEVS, PepiDEVS, PdynEpiDEVS, SpacePi,

and StochasticPi (Himmelspach and Uhrmacher 2007b). In

addition, any model source can be used to feed JAMES

II – as long as there is an appropriate reader being able

to transform the model source into instances defined by a

JAMES II model plug-in. Thereby, JAMES II supports im-

plemented models as well as models stored in an arbitrary

model source (e.g., XML files, databases). The support of

a variety of modeling formalisms is not the only need for

a flexible and scalable system: there is a need to be able to

compose models to create more complex ones. Model com-

position is supported by a co-project of JAMES II: COMO

(Röhl and Uhrmacher 2006). The integration of COMO is

based on the model reader plug-in type as well. Modeling

is a user- and system-specific task – thus, model editors

should be exchangeable. JAMES II makes no restrictions

in regards to the model editors which can be integrated.

Model writer plug-ins for the used formalism allow to write

the model to any supported target. Additionally, the usage

of any external editor is possible as well – as long as there

is a model reader able to read the output of the editor used.

2.4 A flexible and scalable simulation layer

An experiment in JAMES II defines the simulation runs to

be executed with a single model, usually to answer a single

question. A simulation layer which shall support a flexible

and scalable experimentation layer has to support a variety

of different simulation strategies. This comprises various

algorithms and data structures for sequential and parallel

simulation, as well as partitioning and load balancing support

for the latter.

We have realized several plug-ins for these aspects,

which can be replaced by each other. The algorithms can

be selected automatically by the system.

Alternative algorithms In (Himmelspach and Uhrmacher

2006, Himmelspach et al. 2007), we introduced several

algorithms to process PDEVS (Zeigler et al. 2000) models.

They have been realized as plug-ins for JAMES II. These

algorithms are: a direct implementation of the abstract sim-

ulator tree, a parallel sequential simulator (Himmelspach

et al. 2007), and finally three sequential simulators – ab-

stract sequential, flat sequential, and hierarchical sequential

(Himmelspach and Uhrmacher 2006). The number of sim-

ulation algorithms per available modeling formalism can be

extended by using the plug-in mechanism – thus the sim-

ulation layer of JAMES II can be easily adapted to special

needs (e.g., arising from a hardware infrastructure or from

an experiment definition).

Alternative data structures Maybe the most central data

structure for discrete event simulations is the “event queue”

(Vaucher and Duval 1975). Although this is well known

in principle, many existing simulation environments ship

with only one event queue implementation. More than

ten different event queues have been realized for JAMES

II, among them the calendar queue (Brown 1988) and

the MList (Goh and Thng 2003). In (Himmelspach and

Uhrmacher 2007a) we introduced several extended event

queues for supporting an efficient simulation of PDEVS

models. Our experiments underline the well known fact

that there is no event queue which is best for the usage

in all simulation algorithms or for all models – thus, for

achieving real scalability of the simulation, and consequently

of the experimentation layer, a set of event queues must be

available in the system.

Alternative partitioning algorithms Setting up a parallel

and distributed simulation of a model requires a partition-

ing algorithm for creating an initial partition of the given

model. Due to differences in models, especially across dif-

ferent model descriptions, support for several partitioning

algorithms is advisable. For example, a special algorithm

for partitioning tree-based models (which may even contain

constraints on which host a model part has to be placed) can

be applied to PDEVS models (Ewald, Himmelspach, and

Uhrmacher 2006), while other kinds of models are parti-

tioned more efficiently by multi-level partitioning schemes

as implemented in the METIS package (Karypis and Kumar

1995).

3 EXPERIMENTS

As can be seen in Figures 1, and 2, the user interacts with

the simulation layer of JAMES II solely via defining and

issuing experiments. Although the user interface enables

creating and editing models as well, the actual execution

shall be completely determined by the experiment descrip-

tion itself. This distinction allows to re-use models for

different experimentation purposes, such as optimization

or simulation studies. It also facilitates the management

of experiment setups in general and increases the execu-

tion fidelity, as changes in the model do not lead to any

changes in the experimentation procedure. We will now

introduce the structure of experiment definitions and detail

their processing.
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3.1 Experimental Structure

In JAMES II, experiments are instances of the

BaseExperiment class. First of all, an experiment is

defined with respect to a model, so it needs to store the

appropriate factory class for model reading and optional pa-

rameters (such as, e.g., a flag to enable some basic checks

on the model’s soundness while reading). Model readers

are a plug-in type in JAMES II, so that all model reader

factories share the same interface. The model itself is not
a part of the experiment definition, as it could be very

large and the experiment might need to be transferred to

a remote machine. Furthermore, the user can define input

variables to be modified in the course of the experiment. By

doing so, many different simulation settings can be defined

conveniently. The variables and their modification rules are

also part of the experiment definition.

Being JavaBeans, instances of BaseExperiment can be

easily serialized and, e.g., stored to the file system or a

database. Reading and writing experiments is yet another

plug-in type, so new ways to load and store experiments

may be implemented at will. Currently, JAMES II supports

two different XML formats. For more advanced studies,

one could easily create a subclass of BaseExperiment
and still use the rest of the system, it is therefore extensible

to more specific purposes. Experiments can be compiled

to so-called experiment suites. This is an easy way to

define sets of related experiments, e.g., experiments to be

done with a certain model. While all of these features

are straightforward, there are several more complex issues

that need to be supported by a scalable experimentation

environment:

Data Storages JAMES II provides a plug-in type for com-

ponents that allow to store simulation data. As a user may

require anything from local files to (distributed) data base

storages, the selected factory and its parameters are part of

the experiment definition. This provides scalability from a

storage perspective. Data storages store simulation data in a

generic format and assign a unique ID to every experiment

and simulation run. Until now, we realized data storages

for local memory, files, and databases accessible via JDBC

(?). How the simulation data is obtained is described in

Section 3.2.

Random Numbers The generation of pseudo random num-

bers is a commonplace requirement in discrete-event mod-

eling, since many models incorporate stochastic features.

Unfortunately, the random number generators (RNGs) pro-

vided by standard software libraries may not always meet

the requirements in large-scale stochastic applications (Mat-

sumoto et al. 2007). Hence, a plug-in type for RNGs was

implemented, which allows to configure the type of the

RNG algorithm (and, if necessary, its parameters) in the

experiment definition. This makes it possible to execute

the model at hand with different RNG algorithms, so that

resulting artifacts can be detected (Ewald et al. 2008).

Replication Criteria When working with stochastic models,

users need to conduct numerous simulation replications to

get valid insights into the model’s behavior. The number

of replications that is sufficient to get, e.g., results with

a certain statistical significance, may vary. This implies

that the number of required replications is often not just

a constant, but shall be calculated dynamically, based on

the model’s behavior in previous runs (Law and Kelton

1999). To allow this kind of automatic experiment control,

we implemented a plug-in type for different realizations of

replication criteria. Each experiment can be associated with

an arbitrary number of those, and an additional replication

will be issued if any of the associated criteria demands it.

Simulation Runners Finally, the user also needs to de-

cide in which way the experiments shall be conducted. As

JAMES II supports various kinds of fine-grained distributed

simulation (Himmelspach et al. 2007), the experimentation

layer also supports sequential, fine-grained, and coarse-

grained distributed simulation. A fine-grained distributed

execution distributes a single simulation run over a set of

processors, whereas a coarse-grained approach distributes

complete simulation runs, which are then executed sequen-

tially on the remote machine. A simulation runner is a

mechanism that realizes any of those execution strategies.

It is the co-operation between these two complimentary

objects, experiment and simulation runner, which is one

of the main features characterizing our approach: it en-

capsulates all of the execution logic within a simulation

runner, while all user options and configuration elements

reside in the experiment. This distinction allows to interface

an experiment with simulation runners optimized for spe-

cific hardware platforms (e.g., clusters, multi-core CPUs)

or configured to use existing infrastructures (e.g., existing

Grid toolkits like Globus). Again, not the simulation runner

itself but a factory to create it (and optional parameters) are

stored within the experiment.

Repeatability A very important aspect of experiments is

repeatability. Usually, results of an experiment are only

regarded trustworthy if an experiment with identical in-

puts leads to identical results. This is not always easy to

achieve, because the results of an experiment may depend

on stochastic effects, the hardware, the programming lan-

guage in which model or simulator are implemented, the

simulation algorithm as such, and so on.

Important for repeatability is the validation of simulation

algorithms. If simulation algorithms are carefully validated,

the usage of different simulation algorithms should not be

a problem (for discrete event simulations). For differential

equation solvers this is different: here, the algorithm as such

plays an important role (and additionally, the precision of

data types).
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The problem of repeatable random numbers, required

to realize stochastic elements in the model, can be solved by

making seeds and parameters of random number generators

configurable. This is a prerequisite for debugging stochastic

simulations and ensuring their repeatability. However, there

are often many probability distributions to be sampled in

a distributed simulation, which implies the use of many

RNG instances in different threads. This problem is known

as parallel random number generation (Srinivasan et al.

2003, Mascagni and Srinivasan 2004), and requires careful

RNG initialization to avoid correlations. We defined an

RNG generator plug-in type, so that parallel RNGs can

be created by various methods (e.g., parameterization, cf.

Mascagni and Srinivasan 2004) and these are separated from

the rest of the system. Parameters for RNG generators can

be set in the experiment definition.

Thus, an experiment must carry more than only the

information about inputs to be used to stress a model. The

experiment definition of JAMES II is currently restricted

to inputs, random parameters and (if wanted) to the fixed

selection of algorithms. Additional information about a run

(e.g., the versions of the used algorithms) can be collected

automatically and stored together with the simulation results.

3.2 Configuring Observations

While observation of simulation data is a time-consuming

task, the degree of observation largely depends on the model

aspects the user is interested in. Thus, there is an essential

need for a scalable observation mechanism.

JAMES II achieves this scalability on several levels:

Firstly, we discriminate between observation and instru-

mentation. An instrumenter instantiates observers for all

relevant parts of the model. It may select specific model

properties to be observed or even instrument everything

(which is the worst case from a performance perspective).

As instrumenters are configurable by the user, this scales

well with respect to the amount of simulation data that is

actually needed. Secondly, the design of the observer mech-

anism allows the usage of “mediators”, which gather the

collected information before they are sent across a network.

This allows to reduce the network load and also decouples

model execution from data transmission. Thirdly, the data

collection can be done with any of the aforementioned data

storages. Instrumenters for both models and simulators are

also part of the experiment description, and optional param-

eters (such as the type of all sub-models to be observed)

can be given.

4 EXECUTING EXPERIMENTS

From a programming perspective, an experiment can be

regarded as a means to generate the set of parameter con-

figurations to be executed. As described in Section 3,

experiments also define further requirements (like the des-

tination to which observation data shall be written), but this

additional information is simply needed to define the way

in which one configuration shall be executed. We call the

combination of model parameters and additional settings

a simulation configuration in the following. A simulation

configuration is therefore a complete set of information

needed to simulate a model with a single set of parameters.

Most experiments require to execute multiple simulation

configurations, e.g., to test the sensitivity of different model

parameters.

The capability of experiments to generate simulation

configurations needs to be complemented with a compo-

nent that processes these configurations. This approach

resembles a so-called client/server architecture, in which an

experiment acts as the client and generates requests (simu-

lation configurations), while the server receives the requests

and processes them. The advantages of this approach in

our setting are twofold: At first, it decouples the execution

logic from experiment definition and therefore makes the

whole process of experiment execution transparent to the

client. By doing so, we achieve a considerable amount

of scalability with respect to execution modes and ways

of generating configurations (see Section 4.1). Secondly,

it allows to execute several experiments in parallel, as a

server is able to handle more than one client. Two additional

problems arise when considering the various use cases of

an experimentation layer.

Iterated Processing There are several scenarios, e.g., when

integrating optimization algorithms to steer experimentation,

that require to schedule new simulation configurations after

considering the results of past runs. This implies that an

experiment might not be able to generate all simulation con-

figurations at once, but only a certain portion that is needed

to come up with further setups to be evaluated. Therefore,

the server, which is the simulation runner as described in

Section 3.1, must not only receive and process simulation

configurations, but also needs to notify the experiment upon

completion. Then, the experiment might access the corre-

sponding data storage, analyze the output, and schedule new

tasks. This continuous interaction between experiment and

simulation runner allows to integrate any kind of automatic

parameter space exploration techniques. The experimenta-

tion proceeds until the experiment generates no additional

configurations.

Separate Execution Control Sometimes, users might need

to interact with the experimentation layer, e.g., when de-

ciding which kind of simulation output shall be used for

visualization at runtime. It might also be necessary to di-

rect the algorithms that generate new configurations (e.g.,

as described by Persson, Grimm, and Ng 2006), and to stop

experiments or simulation runs manually. Then again, there

are many scenarios where such interaction is not desired

(e.g., for large-scale batch experiments) and there might
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BaseExperiment

EventQueueExperiment etc.

DataStorageFactory

RandomGeneratorFactory

JDBCDataStorFac. FileDataStorageFac. etc.

ExperimentVariables ExperimentVariable

ModelInstrumenterFactory

SimulationInstrumenterFactory

etc.

1 *

Figure 3: Central classes in the experimentation layer: BaseExperiment and its descendants (dotted background) form

the central entities. They control data structures to generate new model inputs (ExperimentVariables, dark grey) and

can be configured with any descendant of a required factory, e.g., any DataStorageFactory (diagonal lines).

even be no graphical user interface at all. To make our

approach scale with the amount of user interaction that is

desired, we added an execution controller to the client/server

setup. The final setup and interaction protocol is outlined

in Figure 4.
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Figure 4: Interacting threads in the experimentation layer:

experiment, execution control, and simulation runner.

When the experiment gets executed, it uses the pre-

defined factory to create a simulation runner in a separate

thread. It then proceeds by generating as many simulation

configurations as possible, and sends the whole list to the

simulation runner. The simulation runner is now responsible

for repeatedly executing each simulation configuration as

defined by the replication criteria. The order of initialization

and the mode of execution (i.e., parallel v. sequential) are

not predetermined. For each execution of a simulation, the

runner only has to do three steps in a specified order (see

Figure 4): Firstly, it shall notify the execution controller

when a simulation is set up and can be started. It does so by

sending a runtime information object containing references

to all the observers it instantiated, and which the user might

now use for on-line visualization. Secondly, the runner

needs to wait until it gets the command from the execution

controller to proceed with executing the simulation run.

This is necessary to enable the selection of observers for

on-line visualization. If the simulation runner would not

wait for the execution controller, then the user could miss

important output at the beginning of the simulation. In a

non-interactive mode, the control thread may automatically

notify the runner to proceed. Finally, the runner needs to ex-

ecute the simulation run and notify the execution controller,

which in turn notifies the experiment. If all simulation

configurations are completed, the experiment may generate

new configurations and send them to the simulation runner.

This setup allows to scale the experimentation layer

in any required direction: as all components are solely

interacting over their interfaces, each participating element

might be replaced by another object implementing the same

interface. In fact, we have implemented two variants of the

simulation runner, two versions of the execution controller

(one to work in command-line mode, one to work in our

default GUI), and even several subclasses of our basic

experiment class.

4.1 Usage scenarios

The scalable experiment layer can be used for a broad set of

different experiments, among them: small scale (sequential)

as well as large scale (many runs or large models) simulation

runs (coarse/fine grained parallel), evaluation of algorithms,

teaching, validation, and optimization. Examples for the

evaluation of algorithms can be found in (Himmelspach

and Uhrmacher 2006, Himmelspach and Uhrmacher 2007a).

Two simple examples for simulation studies are described

in the next section.

4.2 Examples

Model analysis Consider a simple queuing system consist-

ing of a generator, a buffer, and a processor, all realized

as PDEVS models. The generator generates new jobs with

a given rate. These are then stored in the buffer, where

they reside until they get processed by the processor (at

another given rate). Now, it may be of interest to analyze

the mean buffer size, given the (possibly stochastic) rates

for generating and processing jobs. In JAMES II, several

probability distributions are available (e.g. exponential, uni-

form, biased, triangular, etc. (Himmelspach 2007)), which

can be easily used in this context.

This experiment definition does not preselect a simulator

or any further parameters (e.g., event queues to be used).

The decision of which to use is left over to the simulation

framework. The parameters are defined as “loops”, i.e.,

for each generator rate every available processor rate is
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�

Model to be used: examples.pdevs.genbufproc
Parameters:

• GeneratorRate: next from DistributionSequence (initial-

ized with next random seed)

– ProcessorRate: next from DistributionSequence
(initialized with next random seed)

Simulation end time: 10000

Replications: 10 (repeat each experiment 10 times)

Data sink: datastorage.jdbc.

JdbcDataStorageFactory

Model instrumenter: examples.pdevs.genbufproc.

instrumenter.GenBufProcInstrumenter

Simulation runner: Sequential simulation runner

Figure 5: Definition of the first example. An excerpt of its

corresponding XML-description can be found in Figure 6.

�

�

�

�

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.6.0_02" class="java.beans.XMLDecoder

">
<object class="james.core.experiments.BaseExperiment">
<void property="dataStorageFactory">
<object class="datastorage.jdbc.

JdbcDataStorageFactory"/>
</void>
<void property="experimentVariables">[...]</void>
<void property="modelInstrumenterFactory">
<object class="examples.pdevs.genbufproc.

GenBufProcModelInstrumenterFactory"/>
</void>
<void property="modelLocation">
<object class="java.net.URI">
<string>java://examples.pdevs.genbufproc.GenBufProc</

string>
</object>
</void>
<void property="parameters">
<void property="endTime"><double>10000.0</double></

void>
</void>
<void property="replicationCriteria">
<void method="add">
<object class="james.core.experiments.replication.

ReplicationNumberCriterion">
<void property="numOfReplications"><int>10</int></

void>
</object>

</void>
</void>
</object>
</java>

Figure 6: Excerpt of an XML-based experiment definition.

Besides such a bean-serialization, it is possible to implement

additional experiment reader/writer plug-ins, e.g. to access

experiment databases.

used. Each of these simulation runs shall be repeated 10

times. Even though this model is pretty small, scalability

can be very essential for a simulation study. There are

eight different probability distributions available, i.e., we

have to execute 8 × 8× = 64 different setups, each of

them tenfold. In the given configuration these are already

640 simulation runs. If we now decide to execute more

replications, e.g., 100, we’d end up with 6400 runs. Adding

�

�

�

�

Model to be used: examples.pdevs.genbufproc
Parameters:

• Simulator: flat sequential

• EventQueue: next from list of registered event queues
– GeneratorRate: next from DistributionSequence

(init with next rand seed)

∗ ProcessorRate: next from DistributionSe-
quence (init with next rand seed)

Simulation end time: 10000
Replications: 10 (repeat each experiment 10 times)

Data sink: none; Model instrumenter: none

Simulation runner: Sequential simulation runner

Model to be used: examples.pdevs.forestfire
Parameters:

• Simulator: flat sequential

• EventQueue: next from list of registered event queues
– Width: increment by 10 from 10 to 200

∗ Height: increment by 10 from 10 to 200

Simulation end time: 10000

Replications: 10 (repeat each experiment 10 times)

Data sink: none; Model instrumenter: none

Simulation runner: Sequential simulation runner

Figure 7: Experiment suite definition

additional distributions or parameterizing the existing ones

can easily result in several thousand additional executions.

Although a small set of simulation configurations may

be executable on a single computer quickly, a larger set

should be simulated using several machines. To do so,

merely one little change has to be applied to the experiment

configuration: another (parallel) simulation runner needs to

be chosen.

Algorithm analysis If algorithms shall be evaluated a large

number of simulation runs may have to be executed. For

evaluation experiments with algorithms the usage of an

experiment suite makes sense: the evaluation should be done

with a number of models having different characteristics

whereby there might be diverse parameters to be explored

per model.

Our suite will consist of two simple experiments, the

first experiment uses the model from the example given

above, the second experiment is based on a forest fire model

already used in several publications (e.g. Himmelspach and

Uhrmacher 2007a).

The first experiment defines 640 × eventqueues ex-

periments, the second experiment 20 × 20 × eventqueues
experiments. By using the sequential simulation runner all

these experiments will be executed on a single host. If a

new event queue is added to the system the experiment suite

can be re-executed, and the new event queue can be easily

evaluated in direct comparison to the other event queues in

the system. The experiment definition can be easily adapted

to add the dimension of different simulation algorithms us-
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ing the event queues – e.g. we could replace the fixed

simulator entry by a generic list (containing all registered

PDEVS simulators). The results of these experiments can

be found in (Himmelspach and Uhrmacher 2007a).

5 SUMMARY

A scalable experimentation layer must be open for a large

variety of different types of experiments and ways of con-

ducting these. Thus, flexibility and scalability of a well

defined and highly reusable experimentation layer are not

restricted to a single dimension: such a layer has to allow

the experimentation with models of arbitrary type and size

in “any” language, on different hardware infrastructures and

with different goals. Especially the differing goals enforce

an integrated solution for an experiment layer: only if the

experiment layer has full access to all experiment-related in-

formation (including results from previous simulation runs)

any type of experiment can be efficiently supported. Ad-

ditionally, there should not be any restrictions regarding

potential visual support (setup and analysis), data collec-

tion, etc.. As any experiment definition, our experiment

layer has to provide means to unambiguously specify and

store configurations, so that repeatability of experiments

can be ensured. With the proposed layout, we achieve im-

plementation flexibility (and thus, potential scalability) for

the following aspects of simulation execution:

• Various types of models (discrete, continuous, hy-

brid), various model languages, various models,

various model sources

• Various kinds of algorithms (different kinds of

execution, e.g. sequential or distributed)

• Configuration generation (different kinds of exper-

iment definitions, from various sources)

• Degree of observation / flexible instrumentation

• Data storages (different kinds of output storages,

e.g. databases)

• Decision making about further replications (Repli-

cation Criteria, different kinds of output/certainty)

• Parallelization / interfacing the Grid (different in-

frastructures)

• Off- and Online Visualization (different user inter-

action patterns)

• Various kinds of methods to define experiment pa-

rameter space implicitly (optimization, validation,

etc.)

6 OUTLOOK

The simulation layer as realized for JAMES II does not only

support a scalable simulation architecture but also the ex-

perimental evaluation of competing simulation algorithms.

The advantage of this layer is that a new algorithm can be

easily plugged into the system and can then be compared

to other available algorithms. This makes algorithm perfor-

mance comparisons more reliable, as no algorithm needs

to be implemented twice. The experiments with alternative

implementations also indicate that there is no algorithm that

always delivers best performance. Thus, a really scalable

framework must contain as many different solutions (e.g.,

algorithms) as possible. Extensive simulation studies re-

quire a flexible and well-defined experimental setup and

a reliable and well tested simulation environment. This

is especially true if models shall be experimentally vali-

dated. JAMES II provides the preconditions for this and

thus future work will additionally deal with the integration

of automatic model validation. In the near future, we will

add a grid-inspired approach to JAMES II, i.e., massively

parallelize the execution of simulations. Additionally, we

are currently extending the scalability of the simulation

data collection, because a fast execution of a simulation can

easily be hampered by slow data collection.
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