67 research outputs found

    Indicatoren voor 'Convention on biodiversity 2010'. Indicatoren voor het invasieproces van exotische organismen in Nederland

    Get PDF
    Nederland en de Europese Unie zijn ondertekenaar van de Convention on Biodiversity (CBD). EĂ©n van de thema’s van die conventie is ‘Alien Invasive Species'. Evenals in andere landen neemt in Nederland het aantal exoten hand over hand toe. Doel van dit CML document is het presenteren van mogelijke indicatoren voor het proces van bioinvasies in verschillende ecosystemen in Nederland (zoet en zout water, en land) en voor hun impact op natuur, economie en volksgezondheid. Het gaat daarbij om indicatoren die uitstijgen boven het niveau van de individuele soort en die meetbaar zijn tegen redelijke (meer) koste

    Carbon Fluxes and Microbial Activities From Boreal Peatlands Experiencing Permafrost Thaw

    Get PDF
    Permafrost thaw in northern ecosystems may cause large quantities of carbon (C) to move from soil to atmospheric pools. Because soil microbial communities play a critical role in regulating C fluxes from soils, we examined microbial activity and greenhouse gas production soon after permafrost thaw and ground collapse (into collapse‐scar bogs), relative to the permafrost plateau or older thaw features. Using multiple field and laboratory‐based assays at a field site in interior Alaska, we show that the youngest collapse‐scar bog had the highest CH4 production potential from soil incubations, and, based upon temporal changes in porewater concentrations and 13C‐CH4 and 13C‐CO2, had greater summer in situ rates of respiration, methanogenesis, and surface CH4 oxidation. These patterns could be explained by greater C and N availability in the young bog, while alternative terminal electron accepting processes did not play a significant role. Field diffusive CH4 fluxes from the young bog were 4.1 times greater in the shoulder season and 1.7–7.2 times greater in winter relative to older bogs, but not during summer. Greater relative CH4 flux rates in the shoulder season and winter could be due to reduced CH4 oxidation relative to summer, magnifying the importance of differences in production. Both the permafrost plateau and collapse‐scar bogs were sources of C to the atmosphere due in large part to winter C fluxes. In collapse scar bogs, winter is a critical period when differences in thermokarst age translates to differences in surface fluxes. Plain Language Summary Permafrost thaw is occurring in Alaska which may result in a positive feedback to climate warming, due to the release of greenhouse gases such as CO2 and CH4 from soils. Here we examined greenhouse gas production along a gradient of “time since thaw,” hypothesizing that fluxes and microbial activities would be highest soon after thaw, and then decline. We observed highest rates of microbial activities, particularly methanogenesis, soon after thaw, coinciding with less decomposed organic matter and higher concentrations of dissolved carbon and nitrogen in soil, possibly of permafrost origin. However, field fluxes were higher in the young thaw site, compared to the older sites, in winter and not summer, a phenomenon that is currently not well understood

    In vitro-differentiated T/natural killer-cell progenitors derived from human CD34+ cells mature in the thymus

    Full text link
    Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is a treatment option for patients with hematopoietic malignancies that is hampered by treatment-related morbidity and mortality, in part the result of opportunistic infections, a direct consequence of delayed T-cell recovery. Thymic output can be improved by facilitation of thymic immigration, known to require precommitment of CD34(+) cells. We demonstrate that Delta-like ligand-mediated predifferentiation of mobilized CD34(+) cells in vitro results in a population of thymocyte-like cells arrested at a T/natural killer (NK)-cell progenitor stage. On intrahepatic transfer to Rag2(-/-)gamma(c)(-/-) mice, these cells selectively home to the thymus and differentiate toward surface T-cell receptor-alphabeta(+) mature T cells considerably faster than animals transplanted with noncultured CD34(+) cells. This finding creates the opportunity to develop an early T-cell reconstitution therapy to combine with HSCT

    Environmental benefits of leaving offshore infrastructure in the ocean

    Full text link
    © The Ecological Society of America The removal of thousands of structures associated with oil and gas development from the world's oceans is well underway, yet the environmental impacts of this decommissioning practice remain unknown. Similar impacts will be associated with the eventual removal of offshore wind turbines. We conducted a global survey of environmental experts to guide best decommissioning practices in the North Sea, a region with a substantial removal burden. In contrast to current regulations, 94.7% of experts (36 out of 38) agreed that a more flexible case-by-case approach to decommissioning could benefit the North Sea environment. Partial removal options were considered to deliver better environmental outcomes than complete removal for platforms, but both approaches were equally supported for wind turbines. Key considerations identified for decommissioning were biodiversity enhancement, provision of reef habitat, and protection from bottom trawling, all of which are negatively affected by complete removal. We provide recommendations to guide the revision of offshore decommissioning policy, including a temporary suspension of obligatory removal

    Attenuated total reflection infrared spectroscopy for studying adsorbates on planar model catalysts : CO adsorption on silica supported Rh nanoparticles

    Get PDF
    A sensitive method is presented for studying adsorption of gaseous species on metal surfaces in vacuum by attenuated total internal reflection Fourier transform IR spectroscopy (ATR). The method is illustrated by CO adsorption expts. on silica supported Rh nanoparticles. An exptl. setup and a procedure are described in detail to obtain a sensitivity of reflectance change of .apprx.5 * 10-5 absorbance units. Here, a silicon ATR crystal with a 50 nm layer of hydroxylated silica acts as the support for the Rh nanoparticles. These particles are easily prepd. by spincoat impregnation from a RhCl3 soln. followed by H2 redn. XPS before and after redn. shows that rhodium is reduced to Rh0 and that all chlorine is removed. At. force microscope images the distribution of the particles, which are 3-4 nm in height. When the crystal is exposed to pressures up to 1 mbar of CO, a gas which is inert to the silica support, the stretch vibration of linearly adsorbed CO on the Rh nanoparticles is detected at 2023 cm-1, while no bridged CO or geminal dicarbonyl species can be distinguished. The min. detectable coverage is estd. .apprx.0.005 CO per nm2 substrate area or .apprx.5 * 10-4 ML. [on SciFinder (R)
    • 

    corecore