9,696 research outputs found

    A report on SHARP (Spacecraft Health Automated Reasoning Prototype) and the Voyager Neptune encounter

    Get PDF
    The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations

    The three-body recombination of a condensed Bose gas near a Feshbach resonance

    Full text link
    In this paper, we study the three-body recombination rate of a homogeneous dilute Bose gas with a Feshbach resonance at zero temperature. The ground state and excitations of this system are obtained. The three-body recombination in the ground state is due to the break-up of an atom pair in the quantum depletion and the formation of a molecule by an atom from the broken pair and an atom from the condensate. The rate of this process is in good agreement with the experiment on 23^{23}Na in a wide range of magnetic fields.Comment: 10 pages, 2 figures, to be published in Phys. Rev.

    Defect turbulence in inclined layer convection

    Full text link
    We report experimental results on the defect turbulent state of undulation chaos in inclined layer convection of a fluid withPrandtl number ≈1\approx 1. By measuring defect density and undulation wavenumber, we find that the onset of undulation chaos coincides with the theoretically predicted onset for stable, stationary undulations. At stronger driving, we observe a competition between ordered undulations and undulation chaos, suggesting bistability between a fixed-point attractor and spatiotemporal chaos. In the defect turbulent regime, we measured the defect creation, annihilation, entering, leaving, and rates. We show that entering and leaving rates through boundaries must be considered in order to describe the observed statistics. We derive a universal probability distribution function which agrees with the experimental findings.Comment: 4 pages, 5 figure

    Molecular farming of human tissue transglutaminase in tobacco plants

    No full text
    In this study we have utilized Nicotiana tabacum with a molecular farming purpose in attempt of producing transgenic plants expressing the human tissue transglutaminase (htTG). Three plant expression constructs were used enabling targeting and accumulation of the recombinant protein into the plant cell cytosol (cyto), the chloroplasts (chl) and the apoplastic space (apo). Analysis of transgenic T(0) plants revealed that recombinant htTG was detectable in all three transgenic lines and the accumulation levels were in a range of 18-75 mu g/g of leaf material. In the T(1) generation, the recombinant htTG was still expressed at high level and a significant catalytic activity was detected into the leaf protein extracts. Southern blot analyses revealed that apo and chl plants of T(1) generation possess a high copy number of the recombinant htTG in their genome, while the cyto plants carry a single copy

    Transglutaminase-catalyzed site-specific glycosidation of catalase with aminated dextran

    No full text
    An enzymatic approach, based on a transglutaminase-catalyzed coupling reaction, was investigated to modify bovine liver catalase with an end-group aminated dextran derivative. We demonstrated that catalase activity increased after enzymatic glycosidation and that the conjugate was 3.8-fold more stable to thermal inactivation at 55 â—¦C and 2-fold more resistant to proteolytic degradation by trypsin. Moreover, the transglutaminase-mediated modification also improved the pharmacokinetics behavior of catalase, increasing 2.5-fold its plasma half-life time and reducing 3-fold the total clearance after its i.v. administration in rats

    Putrescine-polysaccharide conjugate as transglutaminase substrates and their possible use in producing crosslinked films

    No full text
    Putrescine (1,4-diaminobutane) was covalently linked to alginate and low-methoxyl pectin to synthesize new aminated polysaccharides. Both putrescine-pectin and -alginate conjugates, although the latter at higher concentrations, were found to be able to act as effective acyl acceptor transglutaminase substrates in vitro using both dimethylated casein and soy flour proteins as acyl donors. Monodansylcadaverine, a well known acyl acceptor transglutaminase substrate, dose-dependently counteracted the covalent binding of the aminated polysaccharides to the proteins. Putrescine-pectin conjugate was also tested to prepare, in combination with soy flour proteins, edible films in the presence of purified microbial transglutaminase. Characterization of the enzymatically crosslinked films showed a significant decreased water vapor permeability, with respect to the ones obtained with non-aminated pectin in the presence of transglutaminase, as well as improved mechanical properties, such as high extensibility. Possible biotechnological applications of hydrocolloid films containing putrescine-polysaccharide derivatives enzymatically crosslinked to proteins were suggested

    Quantifying High-Order Interactions in Cardiovascular and Cerebrovascular Networks

    Get PDF
    We present a method to analyze the dynamics of physiological networks beyond the framework of pairwise interactions. Our method defines the so-called O-information rate (OIR) as a measure of the higher-order interaction among several physiological variables. The OIR measure is computed from the vector autoregressive representation of multiple time series, and is applied to the network formed by heart period, systolic and diastolic arterial pressure, respiration and cerebral blood flow variability series measured in healthy subjects at rest and after head-up tilt. Our results document that cardiovascular, cerebrovascular and respiratory interactions are highly redundant, and that redundancy is enhanced by the entrainment of cardiovascular and cerebrovascular oscillations and by sympathetic activation

    Quasi-probability representations of quantum theory with applications to quantum information science

    Full text link
    This article comprises a review of both the quasi-probability representations of infinite-dimensional quantum theory (including the Wigner function) and the more recently defined quasi-probability representations of finite-dimensional quantum theory. We focus on both the characteristics and applications of these representations with an emphasis toward quantum information theory. We discuss the recently proposed unification of the set of possible quasi-probability representations via frame theory and then discuss the practical relevance of negativity in such representations as a criteria for quantumness.Comment: v3: typos fixed, references adde

    Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells

    Get PDF
    N-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to prevent endothelial dysfunction, a crucial step in atherogenesis, by modulating the levels of vasoactive molecules and by influencing Na,K-ATPase activity of vascular myocytes. The activity of endothelial Na,K-ATPase controls the ionic homeostasis of the neighboring cells, as well as cell function. However, controversy exists with respect to the vascular protective effect of EPA and DHA. We argue that this dispute might be due to the use of different concentrations of EPA and DHA in different studies. Therefore, this study was designed to define an optimal concentration of EPA and DHA to investigate endothelial function. For this purpose, human endothelial cells were exposed for 24 h to different concentrations of DHA or EPA (0\u201320 \u3bcM) to study membrane fluidity, peroxidation potential and Na,K-ATPase activity. EPA and DHA were linearly incorporated and this incorporation was mirrored by the linear increase of unsaturation index, membrane fluidity, and peroxidation potential. Na,K-ATPase activity peaked at 3.75 \u3bcM of EPA and DHA and then gradually decreased. It is noteworthy that DHA effects were always more pronounced than EPA. Concluding, low concentrations of EPA and DHA minimize peroxidation sensitivity and optimize Na,K-ATPase activity

    Performances and stability of a 2.4 ton Gd organic liquid scintillator target for antineutrino detection

    Full text link
    In this work we report the performances and the chemical and physical properties of a (2 x 1.2) ton organic liquid scintillator target doped with Gd up to ~0.1%, and the results of a 2 year long stability survey. In particular we have monitored the amount of both Gd and primary fluor actually in solution, the optical and fluorescent properties of the Gd-doped liquid scintillator (GdLS) and its performances as a neutron detector, namely neutron capture efficiency and average capture time. The experimental survey is ongoing, the target being continuously monitored. After two years from the doping time the performances of the Gd-doped liquid scintillator do not show any hint of degradation and instability; this conclusion comes both from the laboratory measurements and from the "in-tank" measurements. This is the largest stable Gd-doped organic liquid scintillator target ever produced and continuously operated for a long period
    • …
    corecore