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Abstract: N-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to prevent
endothelial dysfunction, a crucial step in atherogenesis, by modulating the levels of vasoactive
molecules and by influencing Na,K-ATPase activity of vascular myocytes. The activity of endothelial
Na,K-ATPase controls the ionic homeostasis of the neighboring cells, as well as cell function. However,
controversy exists with respect to the vascular protective effect of EPA and DHA. We argue that
this dispute might be due to the use of different concentrations of EPA and DHA in different
studies. Therefore, this study was designed to define an optimal concentration of EPA and DHA
to investigate endothelial function. For this purpose, human endothelial cells were exposed for
24 h to different concentrations of DHA or EPA (0–20 µM) to study membrane fluidity, peroxidation
potential and Na,K-ATPase activity. EPA and DHA were linearly incorporated and this incorporation
was mirrored by the linear increase of unsaturation index, membrane fluidity, and peroxidation
potential. Na,K-ATPase activity peaked at 3.75µM of EPA and DHA and then gradually decreased. It is
noteworthy that DHA effects were always more pronounced than EPA. Concluding, low concentrations
of EPA and DHA minimize peroxidation sensitivity and optimize Na,K-ATPase activity.

Keywords: endothelium; sodium pump; eicosapentaenoic acid; docosahexaenoic acid; membrane
fluidity; lipid peroxidation

1. Introduction

The Na,K-ATPase or Na+ pump (EC 3.6.37) is an ubiquitous membrane transport protein whose
activity determines and maintains high K+ and low Na+ concentrations in the cytoplasm, generates
a potential across the membrane and provides the driving force for secondary ion transport [1].
Na,K-ATPase consists of two subunits: A large ouabain-sensitive polypeptide (α) responsible for
transporting ions and a smaller glycoprotein (β) needed for enzymatic activity. These subunits are
closely associated with lipids that modulate the activity of the pump [2]. Ion homeostasis, that is
maintained by Na,K-ATPase, is critical for numerous cellular functions and processes, including cell
growth, differentiation, migration, contraction, secretion, and volume regulation [3]. At vascular level,
Na,K-ATPase plays a key role in modulating blood pressure. Experimental evidence has shown that
Na+ pump inhibition causes the contraction of smooth muscle cells [4–6] by promoting Ca2+ entry into
the smooth muscle cells through the inversion of the Na+-Ca2+ exchange system. Endothelial cells
modulate vascular tone by releasing vasoactive mediators [1] and by permitting active solute transport
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between lumen and sub-endothelium. In particular, an asymmetrical localization of Na,K-ATPase
between luminal and abluminal membranes of endothelial cells [4,5] determines trans-endothelial
ionic gradients. These gradients control ionic homeostasis and the performance of the neighboring
smooth muscle cells [7], while transendothelial K+ and Na+ transport regulates the activity of myocytal
Na,K-ATPase [8], crucial for the regulation of vascular tone.

Controversy exists about the role of n-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) in cardiovascular disease prevention and endothelial function [9–11]. Several human studies
suggest that high levels of the n-3 long-chain (LC) polyunsaturated fatty acids (PUFAs) eicosapentaenoic
acid and docosahexaenoic acid in membrane phospholipids reduce cardiovascular risk [12,13] and
improve endothelial function [14]. N-3 LC-PUFAs seem to regulate blood pressure and improve
vascular integrity by preventing vascular inflammatory and adhesion cascades, and by enhancing the
generation and bioavailability of nitric oxide through upregulation and the activation of endothelial
nitric oxide synthase [15]. Surprisingly, incubation with high concentrations of n-3 LC-PUFAs has been
shown to decrease Na, K-ATPase activity of human umbilical vein endothelial cells [16] and sheep
pulmonary artery rings [17]. However, the underlying mechanisms of the effects of EPA and DHA
have not yet been fully clarified. Na,K-ATPase activity is regulated by several factors, including the
availability of substrates [18], hormones [19], circulating endogenous inhibitors, such as cardiotonic
steroids (ouabain, digoxin, etc.) [3], as well as the chemical-physical features of the surrounding
membrane lipid micro-environment, and in particular, the degree of membrane fluidity, the ratio
between phospholipids and cholesterol [20]. It is widely believed that lipids that increase membrane
fluidity promote Na,K-ATPase activation, and, vice versa, those that stiffen the membranes reduce
pump activity [20].

Membrane lipids, such as phospholipid species, their fatty acyl chain length and degree of
unsaturation, and cholesterol content all contribute to the fluidity of the membranes. In general, low
cholesterol content and high degree of unsaturation of phospholipid fatty acyl chains are associated
with fluid membranes [21–23]. The most unsaturated PUFAs in mammalian cell membranes are the
long chain polyunsaturated FAs (LC-PUFAs) of the n-3 and n-6 families, such as EPA (C20:5 n-3), DHA
(C22:6 n-3) and arachidonic acid (ARA, C20:4 n-6) derived from the nutritionally essential linolenic acid
(C18:3 n-3), and linoleic acid (C18:2 n-6), respectively. The LC-PUFAs of these two families compete
for the enzymes needed for their synthesis from the C18 precursors as well as for the enzymes that
synthesize their derivatives. A diet rich in n-3 PUFA, or a dietary supplementation of EPA and/or
DHA, increases the concentration of these FAs in membranes at the expense of ARA and, consequently,
increases the degree of unsaturation of membrane lipids. It also reduces the levels of vasoconstrictor
lipid mediators originating from ARA [24,25]. Moreover, recent studies on lipid bilayers and cellular
systems have shown that EPA and DHA influence the size and order of membrane lipid microdomain.
However, the complex effects of n-3 LC-PUFAs on membrane remodeling still need to be clarified [26].

The higher number of double bonds predispose LC-PUFAs to both enzymatic and non-enzymatic
oxygenation. Enzymatic oxygenation gives rise to a plethora of metabolites that modulate receptor
signaling and gene expression [27–29], whereas the non-enzymatic oxidation or peroxidation determines
LC-PUFAs degradation to cytotoxic products, including peroxides and aldehydes that can greatly
alter the physicochemical properties of membrane lipid bilayers [28,30,31], also through a reduction of
their fluidity [32]. Moreover, lipid peroxidation-derived aldehydes react selectively with proteins or
enzymes containing SH groups such as Na,K-ATPase, altering their functions [33]. Since peroxidation
potential of PUFA increases with the degree of unsaturation, the enrichment in n-3 LC-PUFAs could
enhance membrane lipid susceptibility to peroxidation. Therefore, high concentrations of LC-PUFA on
one hand could improve Na,K-ATPase’s activity through their fluidizing action on membranes, on the
other hand, they could reduce pump activity by increasing peroxidation potential.

The controversy around the vascular protective effect of EPA and DHA might result from the
different concentrations of these compounds used in different studies. Therefore, we designed the
present study to investigate the effects of different concentrations of EPA or DHA on Na,K-ATPase
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activity and membrane chemical-physical parameters that could affect the activity of this ATPase, such
as the degree of membrane fluidity and the susceptibility to lipid peroxidation in human microvascular
endothelial cells (HMEC).

2. Results and Discussion

2.1. Incorporation of N-3 LC-PUFA in Confluent HMEC

Membrane phospholipid (PL) fatty acid composition results from both de novo synthesis (Kennedy’s
pathway) and PL remodeling, through the deacylation-reacylation processes (Lands’ pathway).
The extent of the contribution of these two pathways varies from cell-to-cell, and depends on how
fatty acids are supplied to cells. Human endothelial cells incorporate both free fatty acids and fatty
acid-albumin complexes added to culture medium [34]. Since free FA form micelles in solution and
act as detergents in the presence of lipid membranes [35], we have supplemented HMEC with EPA
or DHA complexed with human albumin. PUFA supplied to human endothelial cells as albumin
complexes are readily incorporated into the cellular PLs and, after 24 h of incubation, were found
mainly (95%) in membranes where they modify fatty acid composition of PLs primarily via the Lands’
pathway [34].

Since 18 h of incubation with lipids suffice to modulate Na,K-ATPase activity of human endothelial
cells [16,36], we considered it reasonable to perform our experiments after 24 h exposure to EPA or
DHA in HMEC.

As shown in Figure 1, 24 h of incubation with different concentrations of EPA or DHA did not
affect cellular viability.
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Figure 1. HMEC were incubated with increasing amounts of N-3 eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) complexed with human defatted albumin or an equivalent amount of
human defatted albumin (control) for 24 h. Viable cells were evaluated by MTT assay. Results from
three separate experiments are shown as % of the control ± standard deviation.

Cell lipids were then extracted, and the levels of EPA and DHA measured by gas chromatography.
The incorporation of both fatty acids after 24 h of incubation is reported in Figure 2. We found
significantly different amounts of EPA and DHA in unstimulated cells. Indeed, the basal levels of EPA
and DHA were 0.408 ± 0.019 nmol/106 cells and 3.8 ± 0.24 nmol/106 cells, respectively (Figure 2A).
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The highest value incorporated of EPA and DHA were 18.0 ± 0.99 nmol/ 106 cells, and 16.9 ± 0.97
nmol/ 106 cells, respectively (Figure 2B).
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Figure 2. Incorporation of EPA or DHA in HMEC. (A): Basal levels of EPA and DHA. * EPA vs DHA p
≤ 0.001 (B): incorporation of EPA (�) and DHA (�) after 24 h of cell incubation with increasing amounts
of these n-3-LC-PUFAs. (C): Changes of unsaturation index (UI) after cell incubation with increasing
amounts of EPA (�) and DHA (�). Pearson’s r = 0.9999, p < 0.0001 and Pearson’s r = 0.9996, p < 0.0001.
Slope EPA vs. slope DHA p ≤ 0.0001.

In agreement with previous studies [34], fatty acid analysis of HMEC, enriched with EPA and
DHA, revealed an increase of the ratio between saturated and polyunsaturated fatty acids, and a
consequent increase in the concentration of double bonds in membrane phospholipids (unsaturation
index, UI). As expected and depicted in Figure 2C, at each dose of n-3 LC-PUFA added to cell culture
medium, DHA (six double bonds) determined a greater increase of UI than EPA (five double bonds).

All the experiments were repeated at least three times. Data are expressed as mean ± SD
of replicates.

2.2. Effects of N-3 LC-PUFA Incorporation on Membrane Fluidity in HMEC

Membrane fluidity after incubation with EPA and DHA was evaluated in HMEC by measuring
fluorescence anisotropy (rs) of 1,6-diphenyl-1,3,5-hexatriene (DPH), a hydrophobic compound almost
non-fluorescent in water. When supplied to the cells, it is readily absorbed into the membranes
where, after intercalation with PL acyl chains, it becomes fluorescent. Rs is a measure of the rotational
mobility of this fluorophore when it is excited with polarized light. The higher the rs, the lower
the fluidity, and vice versa. We found that the incorporation of increasing amounts of EPA and
DHA fluidized membranes, as indicated by the corresponding rs decrease (Figure 3). Interestingly,
DHA increased membrane fluidity significantly more than EPA. The study of correlations showed
that the concentration of these n-3 LC-PUFA significantly correlates with rs (Pearson’s r = 0.9999,
p < 0.0001 and Pearson’s r = 0.9996, p < 0.0001; EPA and DHA, respectively). The comparison of linear
regression curves by one-way ANOVA showed significant differences between the slopes (p ≤ 0.0001).
These results are in agreement with previous studies, showing that the unsaturation index (UI) of
membrane phospholipids is one of the major factors influencing membrane fluidity [21–23]
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Figure 3. Effect of the incubation with increasing amounts of EPA (�) and DHA (�) on fluorescence
anisotropy (rs) of DPH in HMEC membranes. Experiments were performed in triplicate. Data are
expressed as mean ± SD of replicates. Pearson’s r = 0.9999, p < 0.0001 and Pearson’s r = 0.9996,
p < 0.0001; EPA and DHA, respectively. Slope EPA vs. slope DHA p ≤ 0.0001.

2.3. Effects of N-3 LC-PUFA Incorporation on Peroxidation Potential in HMEC

In confluent HMEC enriched with EPA or DHA, peroxidation was induced by a flux of
aqueous peroxyl radicals derived from the thermal decomposition of 2,2′-azobis(2-amidinopropane)
dihydrochloride (AAPH) and monitored by measuring intracellular oxidation of dichlorofluorescin
diacetate (DCFD). The increase of EPA and DHA contents in the cells was associated with an
increase in susceptibility to peroxidation, as shown by the concentration-dependent increase of the
propagation rate (slope) of the kinetic peroxidation curves (Figure 4). The study of correlations showed
that the concentration of these n-3 LC-PUFA significantly correlated with rs (Pearson’s r = 0.9921,
p ≤ 0.0001 and Pearson’s r = 0.9973, p ≤ 0.0001; EPA, and DHA, respectively). The comparison
of linear regression curves by ANOVA showed significant differences between slopes (p ≤ 0.0001).
The concentration-dependent curves indicate that the effect of DHA was significantly higher than that
of EPA.

AAPH is an extensively reported generator of free radicals that are physiologically relevant to
biological systems [37,38]. The kinetic profile of peroxidation induced by AAPH is typically sigmoidal
and characterized by a latency phase, a propagation phase, and termination [38]. In our experimental
model, AAPH was added to culture medium, which contains antioxidants that protect the cells
against peroxidation. Once the antioxidants are exhausted, AAPH radicals can attack the molecules
of cell membranes. Given that PLs are more sensitive to these radical species than cholesterol and
proteins [39], it is reasonable to propose that the PUFA of PLs are the first substrates to be oxidized,
thereby promoting the initial formation of lipid peroxide in cell membranes. Lipid peroxidation of the
membranes promotes the alteration of the redox homeostasis of cells and consequently the oxidation of
DCFD. The compositional variation, due to the increased incorporation of n-3 LC-PUFAs, resulted in a
higher concentration of carbon-carbon double bonds, which are the substrates of lipid peroxidation
reactions. Moreover, the consequent increase in membrane fluidity renders PUFA easily accessible
by the oxidants. As mentioned above, the incorporation of DHA increased IU and the fluidity of the
membrane more than EPA.
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Figure 4. Effect of the incubation with increasing amounts of EPA (�) and DHA (�) enrichment on
peroxidation kinetics of HMEC. Experiments were performed in triplicate. Data are expressed as mean
± SD of replicates. Pearson’s r = 0.9921, p < 0.0001 and Pearson’s r = 0.9973, p < 0.0001; EPA and DHA,
respectively. Slope EPA vs. slope DHA p ≤ 0.0001.

2.4. Effects of N-3 LC-PUFA Incorporation on Na,K-ATPase

Na,K-ATPase in the endothelium was the topic of several investigations. In cerebral endothelial
cells, the inhibition of the pump increased Ca2+ release from the endoplasmic reticulum, thus leading
to endothelial injury [40]. Accordingly, in the present study, we tested the effect of EPA or DHA
exposure on Na,K-ATPase activity in HMEC. As reported in Figure 5, the activity of the pump peaked
with the lowest concentration of EPA and DHA utilized (3.75 µM) and then gradually decreased as the
concentration of these n-3 LC-PUFA increased. Interestingly, DHA-induced peak was significantly
higher than EPA’s (p < 0.001, Student’s t test). It is complex to translate these results to human
physiology, because serum levels of these nutritional essential fatty acids are influenced by several
factors, including genetic factors, diet, and lipemia. A few studies report the serum levels of EPA,
ranging from approximately 1 µmol/L [41], to 400 µmol/L [42] while the concentrations of DHA varied
between 2.3 µmol/L [41] and 580 µmol/L [42]. In our experimental model, the lowest concentration of
n-3 LC-PUFAs added to culture medium was 3.75 µM, which falls within the physiological range [41,42],
and determined a 3.5-fold and 1.5-fold increase of EPA and DHA, respectively, if compared to the basal
level (p < 0.001, Student’s t test). Based on the concentration-dependent effects of n-3 LC-PUFAs, on all
the parameters that we have measured, this seems to be the correct concentration to optimize the activity
of Na, K-ATPase, since it exerts a fluidifying action without appreciably influencing peroxidability.

On the contrary, higher amounts of these PUFAs alter the chemical-physical properties of the
membranes and inhibit the pump activity. Mayol et al. found that EPA and DHA inhibited Na,K-ATPase
activity of macrovascular human endothelial cells by adding these n-3 LC-PUFAs to a culture medium
at much higher concentrations (0.1 mM in form of emulsion with lecithin) than the ones we used in
this study [16]. Similarly, Singh et al. found that 30 µM EPA inhibited pump activity in pulmonary
vessel rings [17].

To the best of our knowledge, this paper is the first to describe a concentration dependent effect
of n-3 LC-PUFA on Na+ pump activity in endothelial cells and to individuate a concentration that
minimizes detrimental effects and optimizes pump activity.
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Figure 5. Effect of the incubation with increasing amounts of EPA (�) or DHA (�) on Na,K-ATPase
activity of HMEC. Experiments were performed in triplicate. Data are expressed as mean ± SD of
replicates. The incubation of HMEC for 24 h with 3.75 µM of n-3 LC-PUFAs significantly increased
pump activity when compared to basal levels and the other concentrations (*, p < 0.001, Student’s t
test). DHA vs. EPA, p < 0.001, Student’s t test (&).

3. Materials and Methods

3.1. Cell Culture

HMEC (LGC Standards-ATCC, Sesto S.G (MI), Italy) were grown in MCDB131 containing
epidermal growth factor (EGF) (10 ng/mL), glutamine (2 mM) and 10% fetal bovine serum (FBS) on
2% gelatin-coated flasks. All culture reagents were from Gibco (Thermo Fisher Scientific, Waltham,
MA, USA). HMEC grown to confluence were incubated for 24 h in the presence of increasing amounts
(from 3.75 to 20 µM) of DHA or EPA (Sigma-Aldrich, Milan, Italy) in complex with human defatted
albumin (Sigma-Aldrich, Milan, Italy) or human defatted albumin (control). To test cell viability, the
MTT assay was utilized as previously described [43]. In other experiments, the cells were harvested
for lipid extraction and subsequent determination of membrane fluidity, peroxidation potential and
Na,K-ATPase activity.

3.2. Fatty Acids Analysis

To determine cell fatty acid composition, lipids were extracted in 2:1 chloroform/methanol
(Sigma-Aldrich, Milan, Italy) containing 0.2% butylated hydroxytoluene (Merck, Darmstadt, Germany),
according to the method by Folch et al. [44]. The lipid extracts were evaporated under nitrogen stream
and trans-methylated with methanol/BF3 (Sigma-Aldrich, Milan, Italy) at 90 ◦C for 2 h. Fatty acid
methyl esters were extracted 3-fold with hexane, concentrated under nitrogen stream and analyzed
using capillary gas chromatography as previously described [45]. The amount of each considered
fatty acid was calculated as nmol/106 cells. The degree of unsaturation (unsaturation index, U.I.) was
calculated as the sum of each unsaturated fatty acid concentration, multiplied by its double bond
number and divided by the total unsaturated fatty acid concentration.

3.3. Membrane Fluidity and Peroxidation Potential

The effects of the enrichment of HMEC with n-3 LC-PUFA on both peroxidation potential
and membrane properties were determined after 24 hours of incubation performed, as described
above. Membrane fluidity status was determined measuring the anisotropy of the fluorescent probe



Molecules 2020, 25, 128 9 of 12

1,6-diphenyl-1,3,5-hexatriene (DPH) [32,46]. The DPH probe was excited at a wavelength of 340 nm,
and the emission wavelength was set at 420 nm. Samples were then excited with vertically polarized
light and the intensity of the emitted light, vertically (Iv) and horizontally (Ih) polarized, were measured.
Anisotropy (rs) was calculated with the equation: rs = Iv − Ih/Iv + 2Ih

Membrane fluidity is a biophysical property of membranes that quantitatively expresses the
mobility and the rate of membrane lipid molecule rotational motion. The anisotropy of DPH is inversely
related to membrane fluidity when inserted between the outermost portions of the fatty acyl chains.

The sensitivity to peroxidation was determined by detecting the kinetics of intracellular reactive
oxygen species formation after adding 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) at
37 ◦C, using dichlorofluorescin diacetate as probe [47]. AAPH is a thermolabile compound that can
give rise to a flux of hydro-soluble free radicals. The slope of the kinetics of the peroxidation curves
was used as an index of peroxidation sensitivity.

3.4. Na,K-ATPase Activity

The effects of n-3 LC-PUFA enrichment on the activity of the membrane enzyme Na,K-ATPase
were measured by determining its inhibition by oubain (1 mM), as previously described [48].
This concentration guarantees the inhibition of both the isoforms of human endothelial cell sodium
pump [16]. Briefly, after 24 h of incubation performed as described above, the cells were trypsinized,
centrifuged (Megafuge 8 series, Heraeus™, Thermo Scientific, Monza, Italy) at 120× g for 5 min and
washed twice with PBS. To lyze the cells, HMEC were resuspended in 25 volumes of cold hypotonic
buffer (10 mM Tris-HCl, pH 7.4) and incubated on ice for 5 min. Lysates were then centrifuged
for 30 min at 100,000× g, 4 ◦C (Optima Max, Beckman Coulter, Cassina De' Pecchi, Milan, Italy).
The membrane pellet was then re-suspended in cold hypotonic buffer and the centrifugation step was
repeated 3 times. Protein concentrations were determined by the method of Lowry et al. [49] using
bovine serum albumin (Sigma-Aldrich, Milan, Italy) as a standard. ATP-ase activity was measured
by preincubating the cells at 37 ◦C for 10 with 92 mM tris-HCl pH 7.4 containing 100 mM NaCl,
20 mM KCl, 5 mM MgSO4,1 mM EDTA (Sigma-Aldrich, Milan, Italy), with or without 1 mM oubain
(Sigma-Aldrich, Milan, Italy). After incubation at 37 ◦C for 10 min with 4 mM vanadate-free ATP
(Sigma-Aldrich, Milan, Italy), the reaction was stopped by adding ice-cold trichloroacetic acid (final
concentration 5%). Cells were then centrifuged for 10 min at 5,500× g at 4 ◦C and the supernatant
was used for the determination of inorganic phosphate (Pi) [50]. Pump activity was calculated as the
difference between the Pi concentrations, obtained in the presence or in the absence of oubain, and
expressed as nmol Pi/hour/mg protein.

3.5. Statistical Analysis

All the measurements were repeated at least three times in triplicate. Data are expressed as the mean
± SD. The linear relationships between n-3 LC-PUFA concentration and EPA and DHA incorporation,
membrane fluidity and peroxidation potential were assessed using Pearson’s correlations. Linear
regression curves were compared by one-way ANOVA. The significance of the difference between
the means was assessed by unpaired t-test. A p-value ≤ 0.05 was considered statistically significant.
Statistical analysis was performed by using StatistiXL software (version 1.5; StatistiXL, Nedlands,
Australia).

4. Conclusions

Increased dietary intake of long-chain n-3 polyunsaturated fatty acids has been shown to be
beneficial for the vascular tree [51]. However, controversies exist on this topic [10]. Recently, EPA was
shown to improve endothelial function [52]. This is crucial since endothelial cells are considered the
gatekeeper of vascular health. Whereas high concentrations alter membrane properties and inhibit
Na,K-ATPase pump activity, our study highlights that a low concentration, namely 3.75 µM/mL, of
EPA and DHA minimizes peroxidation potential and optimizes activity. While this concentration will
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be useful for designing new in vitro and in vivo studies that might reconcile the contrasting reports
available in the literature, it should be noted that our results are complex to translate into clinical
observation because the normal range of EPA and DHA fall within a very wide range.
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