5,438 research outputs found
Paleobiomarkers and defining exobiology experiments for future Mars experiments
Mars is a cold, dry planet with an oxidizing surface bombarded by ultraviolet and ionizing radiation, making prospects for an extant Mars biota bleak. Yet, it is suggested that early Earth and early Mars were similar enought that life may have evoled on Mars. If life did evolve on Mars, what evidence for its existence might we find? What constitutes a Martian paleobiomarker, and how can we distinguish such a marker from abiotically produced substances? The topics studied to answer this question include carbon and nitrogen cycling, as well as the stability and relative abundance of their intermediates in microbially dominated ecosystems. The microbially dominated ecosystems studied are the crytoendolithic microbial community living within sand rocks, the endoevaporite microbial community living inside salt crystals, and the microbial communities living beneath perennially ice-covered lakes and hypersaline ponds. The nitrogen cycle of these communities ranges from simple, where only assimilation occurs, to the more complex, where a complete cycle occurs. The carbon cycle of these communities appears to be complete
A DTA/GC for the in Situ Identification of the Martian Surface Material
The composition and mineralogy of the Martian surface material remain largely unknown. To determine its composition and mineralogy, several techniques are being considered for in situ analyses of the Martian surface material during missions to Mars. We have successfully developed, constructed, and tested a laboratory DTA/GC. The DTA is a Dupont model 1600 high temperature DTA coupled with a GC equipped with a MID detector. The system is operated by a Sun Sparc 11 workstation. When gas evolves during a thermal chemical event, it is shunted into the GC and the temperature is recorded in association with the specific thermal event. We have used this laboratory instrument to define experimental criteria necessary for determining the composition and mineralogy of the Martian surface in situ (e.g., heating of sample to 1100 C to distinguish clays). Our studies indicate that DTA/GC will provide a broad spectrum of mineralogical and evolved gas data pertinent to exobiology, geochemistry, and geology
Ecological considerations for possible Martian biota
Current climatic and geological evidence suggests that, like early Earth, conditions on ancient Mars may also have been favorable for the origin and evolution of life. The primordial atmospheres of the two planets were quite similar, composed primarily of CO2, N2, and water vapor at a total atmospheric pressure of approximately 1 bar. Each of these gases are important for the evolution of biological systems. With the exception of nitrogen, there seems to have been a sufficient supply of the biogenic elements C, H, O, P, and S (CHOPS) on early Mars for life to have evolved. It was postulated that primordial Mars contained only 18 mb of nitrogen in the form of N2 given that only fixed nitrogen is utilized by living systems. Laboratory tests performed at a total pressure of 1 bar and various partial pressures of dinitrogen (pN2 1-780 mb) show that nitrogen fixing organisms grow at pN2's of 18 mb or less, although the biomass and growth rates are decreased. The calcualted in vivo Km's ranged from 46 mb to 130 mb. If organisms adapted on Earth to a pH2 of 780 mb are capable of growing at these low partial pressures, it is conceivable that nitrogen was not the limiting factor in the evolution of life on early Mars
Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece
hree halophilic isolates, strains Halo-G*T, AUS-1 and Naxos II, were compared. Halo-G* was isolated from an evaporitic salt crystal from Baja California, Mexico, whereas AUS-1 and Naxos II were isolated from salt pools in Western Australia and the Greek island of Naxos, respectively. Halo-G*T had been exposed previously to conditions of outer space and survived 2 weeks on the Biopan facility. Chemotaxonomic and molecular comparisons suggested high similarity between the three strains. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains clustered with Halorubrum species, showing sequence similarities of 99.2–97.1 %. The DNA–DNA hybridization values of strain Halo-G*T and strains AUS-1 and Naxos II are 73 and 75 %, respectively, indicating that they constitute a single species. The DNA relatedness between strain Halo-G*T and the type strains of 13 closely related species of the genus Halorubrum ranged from 39 to 2 %, suggesting that the three isolates constitute a different genospecies. The G+C content of the DNA of the three strains was 65.5–66.5 mol%. All three strains contained C20C20 derivatives of diethers of phosphatidylglycerol, phosphatidylglyceromethylphosphate and phosphatidylglycerolsulfate, together with a sulfated glycolipid. On the basis of these results, a novel species that includes the three strains is proposed, with the name Halorubrum chaoviator sp. nov. The type strain is strain Halo-G*T (=DSM 19316T =NCIMB 14426T =ATCC BAA-1602T)
The Antarctic dry valley lakes: Relevance to Mars
The similarity of the early environments of Mars and Earth, and the biological evolution which occurred on early Earth, motivates exobiologists to seriously consider the possiblity of an early Martian biota. Environments are being identified which could contain Martian life and areas which may presently contain evidence of this former life. Sediments which were thought to be deposited in large ice-covered lakes are present on Mars. Such localities were identified within some of the canyons of the Valles Marineris and more recently in the ancient terrain in the Southern Hemisphere. Perennially ice-covered Antarctic lakes are being studied in order to develop quantitative models that relate environmental factors to the nature of the biological community and sediment forming processes. These models will be applied to the Martian paleolakes to establish the scientific rationale for the exobiological study of ancient Martian sediments
The emerging role of ferroptosis in liver cancers
: Liver cancer represents a global health challenge with worldwide growth. Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Indeed, approximately 90% of HCC cases have a low survival rate. Moreover, cholangiocarcinoma (CC) is another malignant solid tumor originating from cholangiocytes, the epithelial cells of the biliary system. It is the second-most common primary liver tumor, with an increasing course in morbidity and mortality. Tumor cells always show high metabolic levels, antioxidant modifications, and an increased iron uptake to maintain unlimited growth. In recent years, alterations in iron metabolism have been shown to play an important role in the pathogenesis of HCC. Several findings show that a diet rich in iron can enhance HCC risk. Hence, elevated iron concentration inside the cell may promote the development of HCC. Growing evidence sustains that activating ferroptosis may potentially block the proliferation of HCC cells. Even in CC, it has been shown that ferroptosis plays a crucial role in the treatment of tumors. Several data confirmed the inhibitory effect in cell growth of photodynamic therapy (PDT) that can induce reactive oxygen species (ROS) in CC, leading to an increase in malondialdehyde (MDA) and a decrease in intracellular glutathione (GSH). MDA and GSH depletion/modulation are crucial in inducing ferroptosis, suggesting that PDT may have the potential to induce this kind of cell death through these ways. A selective induction of programmed cell death in cancer cells is one of the main treatments for malignant tumors; thus, ferroptosis may represent a novel therapeutic strategy against HCC and CC
Tiny percutaneous needle biopsy: An efficient methodfor studying cellular and molecular aspectsof skeletal muscle in humans
Needle biopsy is widely used to obtain specimens for physiological, anatomical and biochemical studies of skeletal muscle (SM). We optimized a procedure which we termed tiny percutaneous needle biopsy (TPNB), to efficiently gather good numbers of human satellite cells and single dissociated fibers for the functional study of skeletal muscle; these samples permit isolation of high-quality RNA and sufficient amounts of proteins to allow molecular analysis. Moreover, TPNB showed a clear advantage in that the technique was easier than other procedures used on healthy volunteers in human trials. TPNB is a very safe minor surgical procedure. It is less traumatic than needle aspiration biopsy, and significant complications are improbable. TPNB should become established as an important tool in the investigation of SM and may be employed to study various physiological aspects of SM in human subjects. We suggest that TPNB should also be used in the study of muscle diseases and disorders including muscular dystrophy, congenital myopathy, and metabolic defects
Mapping litter decomposition by remote-detected indicators
Leaf litter decomposition is a key process for the functioning of natural ecosystems. An important limiting factor
for this process is detritus availability, which we have estimated by remote sensed indices of canopy green
biomass (NDVI). Here, we describe the use of multivariate geostatistical analysis to couple in situ measures with
hyper-spectral and multi-spectral remote-sensed data for producing maps of litter decomposition. A direct relationship
between the decomposition rates in four different CORINE habitats and NDVI, calculated at different
scales from Landsat ETM+ multi-spectral data and MIVIS hyper-spectral data was found. Variogram analysis
was used to evaluate the spatial properties of each single variable and their common interaction. Co-variogram
and co-kriging analysis of the two variables turned out to be an effective approach for decomposition mapping
from remote-sensed spatial explicit data
Different iron-handling in inflamed small and large cholangiocytes and in small and large-duct type intrahepatic cholangiocarcinoma
Cholangiocarcinoma (CCA) represents the second most common primary hepatic malignancy and originates from the neoplastic transformation of the biliary cells. The intrahepatic subtype includes two morpho-molecular forms: large-duct type intrahepatic CCA (iCCA) and small-duct type iCCA. Iron is fundamental for the cellular processes, contributing in tumor development and progression. The aim of this study was to evaluate iron uptake, storage, and efflux proteins in both lipopolysaccharide-inflamed small and large cholangiocytes as well as in different iCCA subtypes. Our results show that, despite an increase in interleukin-6 production by both small and large cholangiocytes, ferroportin (Fpn) was decreased only in small cholangiocytes, whereas transferrin receptor-1 (TfR1) and ferritin (Ftn) did not show any change. Differently from in vitro models, Fpn expression was increased in malignant cholangiocytes of small-duct type iCCA in comparison to large-duct type iCCA and peritumoral tissues. TfR1, Ftn and hepcidin were enhanced, even if at different extent, in both malignant cholangiocytes in comparison to the surrounding samples. Lactoferrin was higher in large-duct type iCCA in respect to small-duct type iCCA and peritumoral tissues. These findings show a different iron handling by inflamed small and large cholangiocytes, and small and large-duct type iCCA. The difference in iron homeostasis by the iCCA subtypes may have implications for the tumor management
- …