10,543 research outputs found

    On computations of the integrated space shuttle flowfield using overset grids

    Get PDF
    Numerical simulations using the thin-layer Navier-Stokes equations and chimera (overset) grid approach were carried out for flows around the integrated space shuttle vehicle over a range of Mach numbers. Body-conforming grids were used for all the component grids. Testcases include a three-component overset grid - the external tank (ET), the solid rocket booster (SRB) and the orbiter (ORB), and a five-component overset grid - the ET, SRB, ORB, forward and aft attach hardware, configurations. The results were compared with the wind tunnel and flight data. In addition, a Poisson solution procedure (a special case of the vorticity-velocity formulation) using primitive variables was developed to solve three-dimensional, irrotational, inviscid flows for single as well as overset grids. The solutions were validated by comparisons with other analytical or numerical solution, and/or experimental results for various geometries. The Poisson solution was also used as an initial guess for the thin-layer Navier-Stokes solution procedure to improve the efficiency of the numerical flow simulations. It was found that this approach resulted in roughly a 30 percent CPU time savings as compared with the procedure solving the thin-layer Navier-Stokes equations from a uniform free stream flowfield

    Seasonal Snow Extent and Snow Mass in South America Using SMMR and SSM/I Passive Microwave Data (1979-2003)

    Get PDF
    Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-satellite and the Special Sensor Microwave Imagers (SSM/I) on board Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1979-2003, both snow cover extent and snow depth (snow mass) were investigated during coldest months (May-September), primarily in the Patagonia area of Argentina and in Chile. Most of the seasonal snow in South America is in the Patagonia region of Argentina. Since winter temperatures in this region are often above freezing, the coldest winter month was found to be the month having the most extensive snow cover and also usually the month having the deepest snow cover as well. Sharp year-to-year differences were recorded using the passive microwave observations. The average snow cover extent for July, the month with the greatest average snow extent during the 25-year period of record, is 320,700 km(exp 2). In July of 1984, the average monthly snow cover was 701,250 km(exp 2) - the most extensive coverage observed between 1979 and 2003. However, in July of 1989, snow cover extent was only 120 km(exp 2). The 25-year period of record shows a sinusoidal like pattern, though there appears to be no obvious trend in either increasing or decreasing snow extent or snow mass between 1979 and 2003

    Chiral fermions on the lattice and index relations

    Get PDF
    Comparing recent lattice results on chiral fermions and old continuum results for the index puzzling questions arise. To clarify this issue we start with a critical reconsideration of the results on finite lattices. We then work out various aspects of the continuum limit. After determining bounds and norm convergences we obtain the limit of the anomaly term. Collecting our results the index relation of the quantized theory gets established. We then compare in detail with the Atiyah-Singer theorem. Finally we analyze conventional continuum approaches.Comment: 34 pages; a more detaild introduction and a subsection with remarks on literature adde

    Quenched chiral logarithms in lattice QCD with exact chiral symmetry

    Full text link
    We examine quenched chiral logarithms in lattice QCD with overlap Dirac quark. For 100 gauge configurations generated with the Wilson gauge action at β=5.8 \beta = 5.8 on the 83×24 8^3 \times 24 lattice, we compute quenched quark propagators for 12 bare quark masses. The pion decay constant is extracted from the pion propagator, and from which the lattice spacing is determined to be 0.147 fm. The presence of quenched chiral logarithm in the pion mass is confirmed, and its coefficient is determined to be δ=0.203±0.014 \delta = 0.203 \pm 0.014 , in agreement with the theoretical estimate in quenched chiral perturbation theory. Further, we obtain the topological susceptibility of these 100 gauge configurations by measuring the index of the overlap Dirac operator. Using a formula due to exact chiral symmetry, we obtain the η \eta' mass in quenched chiral perturbation theory, mη=(901±64) m_{\eta'} = (901 \pm 64) Mev, and an estimate of δ=0.197±0.027 \delta = 0.197 \pm 0.027 , which is in good agreement with that determined from the pion mass.Comment: 24 pages, 6 EPS figures; v2: some clarifications added, to appear in Physical Review

    Optically controlled spin-glasses in multi-qubit cavity systems

    Full text link
    Recent advances in nanostructure fabrication and optical control, suggest that it will soon be possible to prepare collections of interacting two-level systems (i.e. qubits) within an optical cavity. Here we show theoretically that such systems could exhibit novel phase transition phenomena involving spin-glass phases. By contrast with traditional realizations using magnetic solids, these phase transition phenomena are associated with both matter and radiation subsystems. Moreover the various phase transitions should be tunable simply by varying the matter-radiation coupling strength.Comment: 4 pages, 3 figure

    A Quantum Anti-Zeno Paradox

    Get PDF
    We establish an exact differential equation for the operator describing time-dependent measurements continuous in time and obtain a series solution. Suppose the projection operator E(t)=U(t)EU(t)E(t) = U(t) E U^\dagger(t) is measured continuously from t = 0 to T, where E is a projector leaving the initial state unchanged and U(t) a unitary operator obeying U(0) = 1 and some smoothness conditions in t. We prove that the probability of always finding E(t) = 1 from t = 0 to T is unity. If U(t)1U(t) \neq 1, the watched kettle is sure to `boil'.Comment: 10 pages,late

    Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    Get PDF
    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation

    Assessing the Health of Richibucto Estuary with the Latent Health Factor Index

    Get PDF
    The ability to quantitatively assess the health of an ecosystem is often of great interest to those tasked with monitoring and conserving ecosystems. For decades, research in this area has relied upon multimetric indices of various forms. Although indices may be numbers, many are constructed based on procedures that are highly qualitative in nature, thus limiting the quantitative rigour of the practical interpretations made from these indices. The statistical modelling approach to construct the latent health factor index (LHFI) was recently developed to express ecological data, collected to construct conventional multimetric health indices, in a rigorous quantitative model that integrates qualitative features of ecosystem health and preconceived ecological relationships among such features. This hierarchical modelling approach allows (a) statistical inference of health for observed sites and (b) prediction of health for unobserved sites, all accompanied by formal uncertainty statements. Thus far, the LHFI approach has been demonstrated and validated on freshwater ecosystems. The goal of this paper is to adapt this approach to modelling estuarine ecosystem health, particularly that of the previously unassessed system in Richibucto in New Brunswick, Canada. Field data correspond to biotic health metrics that constitute the AZTI marine biotic index (AMBI) and abiotic predictors preconceived to influence biota. We also briefly discuss related LHFI research involving additional metrics that form the infaunal trophic index (ITI). Our paper is the first to construct a scientifically sensible model to rigorously identify the collective explanatory capacity of salinity, distance downstream, channel depth, and silt-clay content --- all regarded a priori as qualitatively important abiotic drivers --- towards site health in the Richibucto ecosystem.Comment: On 2013-05-01, a revised version of this article was accepted for publication in PLoS One. See Journal reference and DOI belo

    Orbital Ferromagnetism and Quantum Collapse in Stellar Plasmas

    Full text link
    The possibility of quantum collapse and characteristics of nonlinear localized excitations is examined in dense stars with Landau orbital ferromagnetism in the framework of conventional quantum magnetohydrodynamics (QMHD) model including Bohm force and spin-orbit polarization effects. Employing the concepts of effective potential and Sagdeev pseudopotential, it is confirmed that the quantum collapse and Landau orbital ferromagnetism concepts are consistent with the magnetic field and mass-density range present in some white dwarf stars. Furthermore, the value of ferromagnetic-field found in this work is about the same order of magnitude as the values calculated earlier. It is revealed that the magnetosonic nonlinear propagations can behave much differently in the two distinct non-relativistic and relativistic degeneracy regimes in a ferromagnetic dense astrophysical object. Current findings should help to understand the origin of the most important mechanisms such as gravitational collapse and the high magnetic field present in many compact stars.Comment: To appear in journal Physics of Plasma

    A Perturbative Study of a General Class of Lattice Dirac Operators

    Full text link
    A perturbative study of a general class of lattice Dirac operators is reported, which is based on an algebraic realization of the Ginsparg-Wilson relation in the form γ5(γ5D)+(γ5D)γ5=2a2k+1(γ5D)2k+2\gamma_{5}(\gamma_{5}D)+(\gamma_{5}D)\gamma_{5} = 2a^{2k+1}(\gamma_{5}D)^{2k+2} where kk stands for a non-negative integer. The choice k=0k=0 corresponds to the commonly discussed Ginsparg-Wilson relation and thus to the overlap operator. We study one-loop fermion contributions to the self-energy of the gauge field, which are related to the fermion contributions to the one-loop β\beta function and to the Weyl anomaly. We first explicitly demonstrate that the Ward identity is satisfied by the self-energy tensor. By performing careful analyses, we then obtain the correct self-energy tensor free of infra-red divergences, as a general consideration of the Weyl anomaly indicates. This demonstrates that our general operators give correct chiral and Weyl anomalies. In general, however, the Wilsonian effective action, which is supposed to be free of infra-red complications, is expected to be essential in the analyses of our general class of Dirac operators for dynamical gauge field.Comment: 30 pages. Some of the misprints were corrected. Phys. Rev. D (in press
    corecore