1,302 research outputs found

    Effect of venting range hood flow rate on size-resolved ultrafine particle concentrations from gas stove cooking

    Get PDF
    Cooking is the main source of ultrafine particles (UFP) in homes. This study investigated the effect of venting range hood flow rate on size-resolved UFP concentrations from gas stove cooking. The same cooking protocol was conducted 60 times using three venting range hoods operated at six flow rates in twin research houses. Size-resolved particle (10–420 nm) concentrations were monitored using a NanoScan scanning mobility particle sizer (SMPS) from 15 min before cooking to 3 h after the cooking had stopped. Cooking increased the background total UFP number concentrations to 1.3 × 103 particles/cm3 on average, with a mean exposure-relevant source strength of 1.8 × 1012 particles/min. Total particle peak reductions ranged from 25% at the lowest fan flow rate of 36 L/s to 98% at the highest rate of 146 L/s. During the operation of a venting range hood, particle removal by deposition was less significant compared to the increasing air exchange rate driven by exhaust ventilation. Exposure to total particles due to cooking varied from 0.9 to 5.8 × 104 particles/cm3·h, 3 h after cooking ended. Compared to the 36 L/s range hood, higher flow rates of 120 and 146 L/s reduced the first-hour post-cooking exposure by 76% and 85%, respectively. © 2018 Crown Copyright. Published with license by Taylor & Francis Group, LLC

    Possibility to realize spin-orbit-induced correlated physics in iridium fluorides

    Get PDF
    Recent theoretical predictions of "unprecedented proximity" of the electronic ground state of iridium fluorides to the SU(2) symmetric jeff=1/2j_{\mathrm{eff}}=1/2 limit, relevant for superconductivity in iridates, motivated us to investigate their crystal and electronic structure. To this aim, we performed high-resolution x-ray powder diffraction, Ir L3_3-edge resonant inelastic x-ray scattering, and quantum chemical calculations on Rb2_2[IrF6_6] and other iridium fluorides. Our results are consistent with the Mott insulating scenario predicted by Birol and Haule [Phys. Rev. Lett. 114, 096403 (2015)], but we observe a sizable deviation of the jeff=1/2j_{\mathrm{eff}}=1/2 state from the SU(2) symmetric limit. Interactions beyond the first coordination shell of iridium are negligible, hence the iridium fluorides do not show any magnetic ordering down to at least 20 K. A larger spin-orbit coupling in iridium fluorides compared to oxides is ascribed to a reduction of the degree of covalency, with consequences on the possibility to realize spin-orbit-induced strongly correlated physics in iridium fluorides

    Distribution of Greenland Halibut and By-catch Species that Overlap the 200-mile Limit Spatially and in Relation to Depth – Effect of Depth Restrictions in the Fishery. Distribution of the Fishable Biomass of the Main Commercial Species of Fish in Relation to Depth

    Get PDF
    It is thought that measures currently in operation in the NAFO Regulatory Area are not adequate for the protection of the juvenile fish. The largest fishery in the NRA and thus the one of greatest concern is that directing for Greenland halibut. As well, the need to reduce by-catch of any species in the Greenland halibut and other fisheries has been noted. Because of the range of depths currently fished, the Greenland halibut fishery not only focuses on the juvenile component of the population but also takes significant by-catch. This paper is a compendium of 12 papers presented recently to Scientific Council. Information on the distribution of Greenland halibut including distribution of undersized (below 35 cm, the Canadian minimum landing size) and mature and immature components of the population based on both survey and commercial information is presented. The paper also elaborates on the distribution of other commercial species that occur in the NRA, those that may be taken as by-catch in the directed Greenland halibut or other NRA fisheries, including those that overlap the Southeast Shoal

    A method of eta' decay product selection to study partial chiral symmetry restoration

    Get PDF
    In case of chiral U_A(1) symmetry restoration the mass of the eta' boson (the ninth, would-be Goldstone boson) is decreased, thus its production cross section is heavily enhanced. The eta' decays (through one of its decay channels) into five pions. These pions will not be correlated in terms of Bose-Einsten correlations, thus the production enhancement changes the strength of two-pion correlation functions at low momentum. Preliminary results strongly support the mass decrease of the eta' boson. In this paper we propose a method to select pions coming from eta' decays. We investigate the efficiency of the proposed kinematical cut in several collision systems and energies with several simulators. We prove that our method can be used in all investigeted collision systems.Comment: Talk at the VI Workshop on Particle Correlations and Femtoscopy, Kiev, September 14-18, 2010. 6 pages, 3 figures. This work was supported by the OTKA grant NK73143 and M. Csanad's Bolyai scholarshi

    Escherichia coli MazF Leads to the Simultaneous Selective Synthesis of Both “Death Proteins” and “Survival Proteins”

    Get PDF
    The Escherichia coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. MazF is an endoribonuclease that leads to the inhibition of protein synthesis by cleaving mRNAs at ACA sequences. Here, using 2D-gels, we show that in E. coli, although MazF induction leads to the inhibition of the synthesis of most proteins, the synthesis of an exclusive group of proteins, mostly smaller than about 20 kDa, is still permitted. We identified some of those small proteins by mass spectrometry. By deleting the genes encoding those proteins from the E. coli chromosome, we showed that they were required for the death of most of the cellular population. Under the same experimental conditions, which induce mazEF-mediated cell death, other such proteins were found to be required for the survival of a small sub-population of cells. Thus, MazF appears to be a regulator that induces downstream pathways leading to death of most of the population and the continued survival of a small sub-population, which will likely become the nucleus of a new population when growth conditions become less stressful

    A Differential Effect of E. coli Toxin-Antitoxin Systems on Cell Death in Liquid Media and Biofilm Formation

    Get PDF
    Toxin-antitoxin (TA) modules are gene pairs specifying for a toxin and its antitoxin and are found on the chromosomes of many bacteria including pathogens. Here we report how each of five such TA systems in E. coli affect bacterial cell death differently in liquid media and during biofilm formation. Of all these systems, only the TA system mazEF mediated cell death both in liquid media and during biofilm formation. At the other extreme, as our results have revealed here, the TA system dinJ-YafQ is unique in that it is involved only in the death process during biofilm formation. Cell death governed by mazEF and dinJ-YafQ seems to participate in biofilm formation through a novel mechanism

    One-pot synthesis, crystallization and deracemization of isoindolinones from achiral reactants

    Get PDF
    The synthesis, crystallization, and complete solid-state deracemization of isoindolinones was realized in one pot simply by grinding achiral reaction components in a suitable solvent with an achiral catalyst. Previously, this concept was applied to a reversible reaction, but herein we showed that it could also be used in combination with reactions in which product formation is irreversible. A controlled final configuration of the product was obtained by using small amounts of chiral additives or seed crystals of the product

    Can changing the timing of outdoor air intake reduce indoor concentrations of traffic-related pollutants in schools?

    Get PDF
    Traffic emissions have been associated with a wide range of adverse health effects. Many schools are situated close to major roads, and as children spend much of their day in school, methods to reduce traffic‐related air pollutant concentrations in the school environment are warranted. One promising method to reduce pollutant concentrations in schools is to alter the timing of the ventilation so that high ventilation time periods do not correspond to rush hour traffic. Health Canada, in collaboration with the Ottawa‐Carleton District School Board, tested the effect of this action by collecting traffic‐related air pollution data from four schools in Ottawa, Canada, during October and November 2013. A baseline and intervention period was assessed in each school. There were statistically significant (P < 0.05) reductions in concentrations of most of the pollutants measured at the two late‐start (9 AM start) schools, after adjusting for outdoor concentrations and the absolute indoor–outdoor temperature difference. The intervention at the early‐start (8 AM start) schools did not have significant reductions in pollutant concentrations. Based on these findings, changing the timing of the ventilation may be a cost‐effective mechanism of reducing traffic‐related pollutants in late‐start schools located near major roads
    corecore