182 research outputs found

    Effect of Long-Term Climbing Training on Cerebellar Ataxia: A Case Series

    Get PDF
    Background. Efficient therapy for both limb and gait ataxia is required. Climbing, a complex task for the whole motor system involving balance, body stabilization, and the simultaneous coordination of all 4 limbs, may have therapeutic potential. Objective. To investigate whether long-term climbing training improves motor function in patients with cerebellar ataxia. Methods. Four patients suffering from limb and gait ataxia underwent a 6-week climbing training. Its effect on ataxia was evaluated with validated clinical balance and manual dexterity tests and with a kinematic analysis of multijoint arm and leg pointing movements. Results. The patients increased their movement velocity and achieved a more symmetric movement speed profile in both arm and leg pointing movements. Furthermore, the 2 patients who suffered the most from gait ataxia improved their balance and 2 of the 4 patients improved manual dexterity. Conclusion. Climbing training has the potential to serve as a new rehabilitation method for patients with upper and lower limb ataxia

    Isolation and fine mapping of Rps6: An intermediate host resistance gene in barley to wheat stripe rust

    Get PDF
    A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant maybe considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on two adjacent fingerprinted contigs. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harbouring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region

    An online database for einkorn wheat to aid in gene discovery and functional genomics studies

    Get PDF
    Diploid A-genome wheat (einkorn wheat) presents a nutrition-rich option as an ancient grain crop and a resource for the improvement of bread wheat against abiotic and biotic stresses. Realizing the importance of this wheat species, reference-level assemblies of two einkorn wheat accessions were generated (wild and domesticated). This work reports an einkorn genome database that provides an interface to the cereals research community to perform comparative genomics, applied genetics and breeding research. It features queries for annotated genes, the use of a recent genome browser release, and the ability to search for sequence alignments using a modern BLAST interface. Other features include a comparison of reference einkorn assemblies with other wheat cultivars through genomic synteny visualization and an alignment visualization tool for BLAST results. Altogether, this resource will help wheat research and breeding. Database URL  https://wheat.pw.usda.gov/GG3/pangenome

    Einkorn genomics sheds light on history of the oldest domesticated wheat

    Full text link
    Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2^{1,2}. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat

    Hypersensitive Response-Like Reaction Is Associated with Hybrid Necrosis in Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii Coss

    Get PDF
    BACKGROUND: Hybrid speciation is classified into homoploid and polyploid based on ploidy level. Common wheat is an allohexaploid species that originated from a naturally occurring interploidy cross between tetraploid wheat and diploid wild wheat Aegilops tauschii Coss. Aegilops tauschii provides wide naturally occurring genetic variation. Sometimes its triploid hybrids with tetraploid wheat show the following four types of hybrid growth abnormalities: types II and III hybrid necrosis, hybrid chlorosis, and severe growth abortion. The growth abnormalities in the triploid hybrids could act as postzygotic hybridization barriers to prevent formation of hexaploid wheat. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report on the geographical and phylogenetic distribution of Ae. tauschii accessions inducing the hybrid growth abnormalities and showed that they are widely distributed across growth habitats in Ae. tauschii. Molecular and cytological characterization of the type III necrosis phenotype was performed. The hybrid abnormality causing accessions were widely distributed across growth habitats in Ae. tauschii. Transcriptome analysis showed that a number of defense-related genes such as pathogenesis-related genes were highly up-regulated in the type III necrosis lines. Transmission electron microscope observation revealed that cell death occurred accompanied by generation of reactive oxygen species in leaves undergoing type III necrosis. The reduction of photosynthetic activity occurred prior to the appearance of necrotic symptoms on the leaves exhibiting hybrid necrosis. CONCLUSIONS/SIGNIFICANCE: Taking these results together strongly suggests that an autoimmune response might be triggered by intergenomic incompatibility between the tetraploid wheat and Ae. tauschii genomes in type III necrosis, and that genetically programmed cell death could be regarded as a hypersensitive response-like cell death similar to that observed in Arabidopsis intraspecific and Nicotiana interspecific hybrids. Only Ae. tauschii accessions without such inhibiting factors could be candidates for the D-genome donor for the present hexaploid wheat

    Multi-Trait and Multi-Environment QTL Analyses for Resistance to Wheat Diseases

    Get PDF
    BACKGROUND: Stripe rust, leaf rust, tan spot, and Karnal bunt are economically significant diseases impacting wheat production. The objectives of this study were to identify quantitative trait loci for resistance to these diseases in a recombinant inbred line (RIL) from a cross HD29/WH542, and to evaluate the evidence for the presence loci on chromosome region conferring multiple disease resistance. METHODOLOGY/PRINCIPAL FINDINGS: The RIL population was evaluated for four diseases and genotyped with DNA markers. Multi-trait (MT) analysis revealed thirteen QTLs on nine chromosomes, significantly associated with resistance. Phenotypic variation explained by all significant QTLs for KB, TS, Yr, Lr diseases were 57%, 55%, 38% and 22%, respectively. Marginal trait analysis identified the most significant QTLs for resistance to KB on chromosomes 1BS, 2DS, 3BS, 4BL, 5BL, and 5DL. Chromosomes 3AS and 4BL showed significant association with TS resistance. Significant QTLs for Yr resistance were identified on chromosomes 2AS, 4BL and 5BL, while Lr was significant on 6DS. MT analysis revealed that all the QTLs except 3BL significantly reduce KB and was contributed from parent HD29 while all resistant QTLs for TS except on chromosomes 2DS.1, 2DS.2 and 3BL came from WH542. Five resistant QTLs for Yr and six for Lr were contributed from parents WH542 and HD29 respectively. Chromosome region on 4BL showed significant association to KB, TS, and Yr in the population. The multi environment analysis for KB identified three putative QTLs of which two new QTLs, mapped on chromosomes 3BS and 5DL explained 10 and 20% of the phenotypic variation, respectively. CONCLUSIONS/SIGNIFICANCE: This study revealed that MT analysis is an effective tool for detection of multi-trait QTLs for disease resistance. This approach is a more effective and practical than individual QTL mapping analyses. MT analysis identified RILs that combine resistance to multiple diseases from parents WH542 and/or HD29

    Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The barley-<it>Puccinia hordei </it>(barley leaf rust) pathosystem is a model for investigating partial disease resistance in crop plants and genetic mapping of phenotypic resistance has identified several quantitative trait loci (QTL) for partial resistance. Reciprocal QTL-specific near-isogenic lines (QTL-NILs) have been developed that combine two QTL, <it>Rphq</it>2 and <it>Rphq</it>3, the largest effects detected in a recombinant-inbred-line (RIL) population derived from a cross between the super-susceptible line L94 and partially-resistant line Vada. The molecular mechanism underpinning partial resistance in these QTL-NILs is unknown.</p> <p>Results</p> <p>An Agilent custom microarray consisting of 15,000 probes derived from barley consensus EST sequences was used to investigate genome-wide and QTL-specific differential expression of genes 18 hours post-inoculation (hpi) with <it>Puccinia hordei</it>. A total of 1,410 genes were identified as being significantly differentially expressed across the genome, of which 55 were accounted for by the genetic differences defined by QTL-NILs at <it>Rphq</it>2 and <it>Rphq</it>3. These genes were predominantly located at the QTL regions and are, therefore, positional candidates. One gene, encoding the transcriptional repressor Ethylene-Responsive Element Binding Factor 4 (<it>HvERF4</it>) was located outside the QTL at 71 cM on chromosome 1H, within a previously detected eQTL hotspot for defence response. The results indicate that <it>Rphq</it>2 or <it>Rphq</it>3 contains a <it>trans</it>-eQTL that modulates expression of <it>HvERF4</it>. We speculate that HvERF4 functions as an intermediate that conveys the response signal from a gene(s) contained within <it>Rphq</it>2 or <it>Rphq</it>3 to a host of down-stream defense responsive genes. Our results also reveal that barley lines with extreme or intermediate partial resistance phenotypes exhibit a profound similarity in their spectrum of <it>Ph</it>-responsive genes and that hormone-related signalling pathways are actively involved in response to <it>Puccinia hordei</it>.</p> <p>Conclusions</p> <p>Differential gene expression between QTL-NILs identifies genes predominantly located within the target region(s) providing both transcriptional and positional candidate genes for the QTL. Genetically mapping the differentially expressed genes relative to the QTL has the potential to discover <it>trans</it>-eQTL mediated regulatory relays initiated from genes within the QTL regions.</p

    Mind the gap: connexins and cell–cell communication in the diabetic kidney

    Get PDF
    Connexins, assembled as a hexameric connexon, form a transmembrane hemichannel that provides a conduit for paracrine signalling of small molecules and ions to regulate the activity and function of adjacent cells. When hemichannels align and associate with similar channels on opposing cells, they form a continuous aqueous pore or gap junction, allowing the direct transmission of metabolic and electrical signals between coupled cells. Regulation of gap junction synthesis and channel activity is critical for cell function, and a number of diseases can be attributed to changes in the expression/function of these important proteins. Diabetic nephropathy is associated with several complex metabolic and inflammatory responses characterised by defects at the molecular, cellular and tissue level. In both type 1 and type 2 diabetes, glycaemic injury of the kidney is the leading cause of end-stage renal failure, a consequence of multiple aetiologies, including increased deposition of extracellular matrix, glomerular hyperfiltration, albuminuria and tubulointerstitial fibrosis. In diabetic nephropathy, loss of connexin mediated cell–cell communication within the nephron may represent an early sign of disease; however, our current knowledge of the role of connexins in the diabetic kidney is sparse. This review highlights recent evidence demonstrating that maintenance of connexin-mediated cell–cell communication could benefit region-specific renal function in diabetic nephropathy and suggests that these proteins should be viewed as a tantalising novel target for therapeutic intervention
    corecore