787 research outputs found

    Subduction-zone structure and magmatic processes beneath Costa Rica constrained by local earthquake tomography and petrological modelling

    Get PDF
    A high-quality data set of 3790 earthquakes were simultaneously inverted for hypocentre locations and 3-D P-wave velocities in Costa Rica. Tests with synthetic data and resolution estimates derived from the resolution matrix indicate that the velocity model is well constrained in central Costa Rica to a depth of 70 km; northwestern and southeastern Costa Rica are less well resolved owing to a lack of seismic stations and seismicity. Maximum H2O content and seismic wave speeds of mid-ocean ridge basalt and harzburgite were calculated for metamorphic phase transformations relevant to subduction. Both the 3-D P-wave velocity structure and petrological modelling indicate the existence of low-velocity hydrous oceanic crust in the subducting Cocos Plate beneath central Costa Rica. Intermediate-depth seismicity correlates well with the predicted locations of hydrous metamorphic rocks, suggesting that dehydration plays a key role in generating intermediate-depth earthquakes beneath Costa Rica. Wadati-Benioff zone seismicity beneath central Costa Rica shows a remarkable decrease in maximum depth toward southeastern Costa Rica. The presence of asthenosphere beneath southeastern Costa Rica, which entered through a proposed slab window, may explain the shallowing of seismicity due to increased temperatures and associated shallowing of dehydration of the slab. Tomographic images further constrain the existence of deeply subducted seamounts beneath central Costa Rica. Large, low P-wave velocity areas within the lower crust are imaged beneath the southeasternmost volcanoes in central Costa Rica. These low velocities may represent anomalously hot material or even melt associated with active volcanism in central Costa Rica. Tomographic images and petrological modelling indicate the existence of a shallow, possibly hydrated mantle wedge beneath central Costa Ric

    Novel microsatellite loci for Sebaea aurea (Gentianaceae) and cross-amplification in related species.

    Get PDF
    [Premise of the study] Microsatellite loci were developed in Sebaea aurea (Gentianaceae) to investigate the functional role of diplostigmaty (i.e., the presence of additional stigmas along the style).[Methods and Results] One hundred seventy-four and 180 microsatellite loci were isolated through 454 shotgun sequencing of genomic and microsatellite-enriched DNA libraries, respectively. Sixteen polymorphic microsatellite loci were characterized, and 12 of them were selected to genotype individuals from two populations. Microsatellite amplifi cation was conducted in two multiplex groups, each containing six microsatellite loci. Cross-species amplifi cation was tested in seven other species of Sebaea . The 12 novel microsatellite loci amplifi ed only in the two most closely related species to S. aurea (i.e., S. ambigua and S. minutifl ora ) and were also polymorphic in these two species.[Conclusions] These results demonstrate the usefulness of this set of newly developed microsatellite loci to investigate the mating system and population genetic structure in S. aurea and related species.We acknowledge grants to J.K. from the Swiss National Science Foundation (PA00P3_129140) and the Velux Stiftung (project no. 679) and to J.G.S.-M. from a postdoctoral research contract “Ramón y Cajal” from the Ministerio de Ciencia e Innovación (MICINN), Spain.Peer Reviewe

    NEW MOHO MAP OF ITALY

    Get PDF
    In complex tectonics regions, seismological, geophysical, and geodynamic modeling require accurate definition of the Moho geometry. Various active and passive seismic experiments performed in the central Mediterranean region revealed local information on the Moho depth, in some cases used to produce interpolated maps. In this paper, we present a new and original map of the 3-D Moho geometry obtained by integrating selected high-quality controlled source seismic and teleseismic receiver function data. The very small cell size makes the retrieved model suitable for detailed regional studies, crustal corrections in teleseismic tomography, advanced 3-D ray tracing in regional earthquake location, and local earthquake tomography. Our results show the geometry of three different Moho interfaces: the European, Adriatic-Ionian, and Tyrrhenian. The three distinct Moho are fashioned following the Alpine and Apennines subduction, collision, and back-arc spreading and show medium- to high-frequency topographic undulations reflecting the complexity of the geodynamic evolution

    Global late Quaternary megafauna extinctions linked to humans, not climate change

    Get PDF
    The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132 000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial–interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary

    Differentialdiagnosen des komplexen regionalen Schmerzsyndromes

    Full text link
    corecore