1,818 research outputs found

    Evidence for impulsivity in the Spontaneously Hypertensive Rat drawn from complementary response-withholding tasks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inability to inhibit reinforced responses is a defining feature of ADHD associated with impulsivity. The Spontaneously Hypertensive Rat (SHR) has been extolled as an animal model of ADHD, but there is no clear experimental evidence of inhibition deficits in SHR. Attempts to demonstrate these deficits may have suffered from methodological and analytical limitations.</p> <p>Methods</p> <p>We provide a rationale for using two complementary response-withholding tasks to doubly dissociate impulsivity from motivational and motor processes. In the lever-holding task (LHT), continual lever depression was required for a minimum interval. Under a differential reinforcement of low rates schedule (DRL), a minimum interval was required between lever presses. Both tasks were studied using SHR and two normotensive control strains, Wistar-Kyoto (WKY) and Long Evans (LE), over an overlapping range of intervals (1 – 5 s for LHT and 5 – 60 s for DRL). Lever-holding and DRL performance was characterized as the output of a mixture of two processes, timing and iterative random responding; we call this account of response inhibition the Temporal Regulation (TR) model. In the context of TR, impulsivity was defined as a bias toward premature termination of the timed intervals.</p> <p>Results</p> <p>The TR model provided an accurate description of LHT and DRL performance. On the basis of TR parameter estimates, SHRs were more impulsive than LE rats across tasks and target times. WKY rats produced substantially shorter timed responses in the lever-holding task than in DRL, suggesting a motivational or motor deficit. The precision of timing by SHR, as measured by the variance of their timed intervals, was excellent, flouting expectations from ADHD research.</p> <p>Conclusion</p> <p>This research validates the TR model of response inhibition and supports SHR as an animal model of ADHD-related impulsivity. It indicates, however, that SHR's impulse-control deficit is not caused by imprecise timing. The use of ad hoc impulsivity metrics and of WKY as control strain for SHR impulsivity are called into question.</p

    Annual and semi‐annual temperature oscillations in the upper mesosphere

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94874/1/grl8615.pd

    Heat shock proteins of vegetative and fruiting Myxococcus xanthus cells

    Get PDF
    The heat shock response of Myxococcus xanthus was investigated and characterized. When shifted from 28 to 40°C, log-phase cells rapidly ceased growth, exhibited a 50% reduction in CFU, and initiated the synthesis of heat shock proteins (HTPs). Heat-shocked log-phase M. xanthus cells labeled with [35S]methionine were found to produce 18 major HTPs. The HTPs, analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography, were characterized with regard to molecular mass, subcellular location (periplasm, membrane, or cytoplasm), and temperature required for expression. Most HTPs were expressed at 36°C, the optimum growth temperature of M. xanthus. Cells preincubated at 36°C for 1 h before being shifted to 40°C demonstrated increased thermotolerance compared with cells shifted directly from 28 to 40°C. The HTPs produced by heat-shocked starvation-induced fruiting cells and glycerol-induced sporulating cells were also analyzed and characterized. Thirteen HTPs were detected in fruiting cells shifted from 28 to 40°C. Six of these HTPs were not seen in vegetative M. xanthus cells. Log-phase cells induced to sporulate by the addition of glycerol produced 17 HTPs after being shifted to 40°C. These HTPs were found to be a mixture of HTPs detected in heat-shocked log-phase cells and heat-shocked fruiting cells

    The neutral wind “flywheel” as a source of quiet‐time, polar‐cap currents

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94751/1/grl2850.pd

    Protein-DNA computation by stochastic assembly cascade

    Full text link
    The assembly of RecA on single-stranded DNA is measured and interpreted as a stochastic finite-state machine that is able to discriminate fine differences between sequences, a basic computational operation. RecA filaments efficiently scan DNA sequence through a cascade of random nucleation and disassembly events that is mechanistically similar to the dynamic instability of microtubules. This iterative cascade is a multistage kinetic proofreading process that amplifies minute differences, even a single base change. Our measurements suggest that this stochastic Turing-like machine can compute certain integral transforms.Comment: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC129313/ http://www.pnas.org/content/99/18/11589.abstrac

    Mathematical Evaluation of Community Level Impact of Combining Bed Nets and Indoor Residual Spraying upon Malaria Transmission in Areas where the main Vectors are Anopheles Arabiensis Mosquitoes.

    Get PDF
    Indoor residual insecticide spraying (IRS) and long-lasting insecticide treated nets (LLINs) are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset, PermaNet 2.0, Icon Life nets) with IRS (pirimiphos methyl, lambda cyhalothrin, DDT), in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset or PermaNet 2.0 nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used), but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used) or even regressive (e.g. when DDT is used for the IRS). Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of whether they are delivered as LLINs or IRS. The insecticidal action of LLINs and IRS probably already approaches their absolute limit of potential impact upon this persistent vector so personal protection of nets should be enhanced by improving the physical integrity and durability. Combining LLINs and non-pyrethroid IRS in residual transmission systems may nevertheless be justified as a means to manage insecticide resistance and prevent potential rebound of not only An. arabiensis, but also more potent, vulnerable and historically important species such as Anopheles gambiae and Anopheles funestus

    Behavioral variability, elimination of responses, and delay-of-reinforcement gradients in SHR and WKY rats

    Get PDF
    © 2007 Johansen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Estimating regional evapotranspiration from remotely sensed data by surface energy balance models

    Get PDF
    Spatial and temporal variations of surface radiative temperatures of the burned and unburned areas of the Konza tallgrass prairie were studied. The role of management practices, topographic conditions and the uncertainties associated with in situ or airborne surface temperature measurements were assessed. Evaluation of diurnal and seasonal spectral characteristics of the burned and unburned areas of the prairie was also made. This was accomplished based on the analysis of measured spectral reflectance of the grass canopies under field conditions, and modelling their spectral behavior using a one dimensional radiative transfer model
    corecore