119 research outputs found

    Improved genetic algorithms by means of fuzzy crossover operators for revenue management in airlines

    Get PDF
    Abstract: Revenue Management is an economic policy that increases the earned profit by adjusting the service demand and inventory. Revenue Management in airlines correlates with inventory control and price levels in different fare classes. We focus on pricing and seat allocation problems in airlines by introducing a constrained optimization problem in Binary Integer Programming (BIP) formulation. Two BIP problems are represented. Moreover, some improved Genetic Algorithms (GAs) approaches are used to solve these problems. We introduce new crossover operators that assign a Fuzzy Membership Function to each parent in GAs. We achieve better outputs with new methods that take lower calculation times and earn higher profits. Three different test problems in different scales are selected to evaluate the effectiveness of each algorithm. This paper defines new crossover operators that help to reach better solutions that take lower calculation times and more earned profits

    A conceptual framework for ranking the multiple intelligences of people with epilepsy

    Get PDF
    Intelligence of a person can be enhanced if the person focuses and practices regularly. ATIE©, a psychometric test, was developed based on the Multiple Intelligence (MI) theory of Howard Gardner to measure eight types of intelligence skills namely musical, kinesthetic, math-logic, spatial, verbal, interpersonal, intrapersonal and naturalist. The inverse model of ATIE , Fuzzy Inverse ATIE (FIA) was developed to get the best intelligence parameters that would be garnered to maximize the employment probability of people with epilepsy (PWE). In this paper, we present a conceptual framework of a model to rank the suggested intelligences obtained from FIA which are to be improved. This information is essential in order to improve the chances of PWE to be employed

    New flexible channels for room temperature tunneling field effect transistors

    Get PDF
    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (in-situ STM-TEM). As suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending

    Vaccination with human amniotic epithelial cells confer effective protection in a murine model of Colon adenocarcinoma

    Get PDF
    As a prophylactic cancer vaccine, human amniotic membrane epithelial cells (hAECs) conferred effective protection in a murine model of colon cancer. The immunized mice mounted strong cross-protective CTL and antibody responses. Tumor burden was significantly reduced in tumor-bearing mice after immunization with hAECs. Placental cancer immunotherapy could be a promising approach for primary prevention of cancer. In spite of being the star of therapeutic strategies for cancer treatment, the results of immunotherapeutic approaches are still far from expectations. In this regard, primary prevention of cancer using prophylactic cancer vaccines has gained considerable attention. The immunologic similarities between cancer development and placentation have helped researchers to unravel molecular mechanisms responsible for carcinogenesis and to take advantage of stem cells from reproductive organs to elicit robust anti-cancer immune responses. Here, we showed that vaccination of mice with human amniotic membrane epithelial cells (hAECs) conferred effective protection against colon cancer and led to expansion of systemic and splenic cytotoxic T cell population and induction of cross-protective cytotoxic responses against tumor cells. Vaccinated mice mounted tumor-specific Th1 responses and produced cross-reactive antibodies against cell surface markers of cancer cells. Tumor burden was also significantly reduced in tumor-bearing mice immunized with hAECs. Our findings pave the way for potential future application of hAECs as an effective prophylactic cancer vaccine. © 2017 UIC

    Vaccination with human amniotic epithelial cells confer effective protection in a murine model of Colon adenocarcinoma

    Get PDF
    As a prophylactic cancer vaccine, human amniotic membrane epithelial cells (hAECs) conferred effective protection in a murine model of colon cancer. The immunized mice mounted strong cross-protective CTL and antibody responses. Tumor burden was significantly reduced in tumor-bearing mice after immunization with hAECs. Placental cancer immunotherapy could be a promising approach for primary prevention of cancer. In spite of being the star of therapeutic strategies for cancer treatment, the results of immunotherapeutic approaches are still far from expectations. In this regard, primary prevention of cancer using prophylactic cancer vaccines has gained considerable attention. The immunologic similarities between cancer development and placentation have helped researchers to unravel molecular mechanisms responsible for carcinogenesis and to take advantage of stem cells from reproductive organs to elicit robust anti-cancer immune responses. Here, we showed that vaccination of mice with human amniotic membrane epithelial cells (hAECs) conferred effective protection against colon cancer and led to expansion of systemic and splenic cytotoxic T cell population and induction of cross-protective cytotoxic responses against tumor cells. Vaccinated mice mounted tumor-specific Th1 responses and produced cross-reactive antibodies against cell surface markers of cancer cells. Tumor burden was also significantly reduced in tumor-bearing mice immunized with hAECs. Our findings pave the way for potential future application of hAECs as an effective prophylactic cancer vaccine. © 2017 UIC

    Synthesis of Oleoylethanolamide Using Lipase

    Get PDF
    An effective process for the enzymatic synthesis of oleoylethanolamide is described in this study. The process included purification of a commercial oleic acid product and then optimization of the reaction between the purified oleic acid and ethanolamine in the presence of hexane and a lipase. Under the optimal amidation reaction conditions identified, oleoylethanolamide was obtained with 96.6% purity. The synthesis was also conducted on a large scale (50 mmol of each of the reactants), and oleoylethanolamide purity and yield after crystallization purification were 96.1 and 73.5%, respectively. Compared to the previous studies, the current method of preparing high-purity oleoylethanolamide is more effective and economically feasible. The scalability and ease for such synthesis make it possible to study the biological and nutritional functions of the cannabinoid-like oleoylethanolamide in animal or human subjects

    Correction to: "Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocyes during 36 weeks in rabbit model (Cell and Tissue Research, (2016), 364, 3, (559-572), 10.1007/s00441-015-2355-9)

    Get PDF
    In this paper, figure 1 and its associated text were erroneously identical to that of another article from our group (Mobini et al., 2016, Journal of Biomaterial Application, SAGE publications). Unfortunately, copyright permission to re-use figure 1 and its related data were not requested. The authors would like to apologize for any confusion caused in this regard. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature

    Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000-2021: a systematic analysis from the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Previous global analyses, with known underdiagnosis and single cause per death attribution systems, provide only a small insight into the suspected high population health effect of sickle cell disease. Completed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study delivers a comprehensive global assessment of prevalence of sickle cell disease and mortality burden by age and sex for 204 countries and territories from 2000 to 2021. METHODS: We estimated cause-specific sickle cell disease mortality using standardised GBD approaches, in which each death is assigned to a single underlying cause, to estimate mortality rates from the International Classification of Diseases (ICD)-coded vital registration, surveillance, and verbal autopsy data. In parallel, our goal was to estimate a more accurate account of sickle cell disease health burden using four types of epidemiological data on sickle cell disease: birth incidence, age-specific prevalence, with-condition mortality (total deaths), and excess mortality (excess deaths). Systematic reviews, supplemented with ICD-coded hospital discharge and insurance claims data, informed this modelling approach. We employed DisMod-MR 2.1 to triangulate between these measures-borrowing strength from predictive covariates and across age, time, and geography-and generated internally consistent estimates of incidence, prevalence, and mortality for three distinct genotypes of sickle cell disease: homozygous sickle cell disease and severe sickle cell β-thalassaemia, sickle-haemoglobin C disease, and mild sickle cell β-thalassaemia. Summing the three models yielded final estimates of incidence at birth, prevalence by age and sex, and total sickle cell disease mortality, the latter of which was compared directly against cause-specific mortality estimates to evaluate differences in mortality burden assessment and implications for the Sustainable Development Goals (SDGs). FINDINGS: Between 2000 and 2021, national incidence rates of sickle cell disease were relatively stable, but total births of babies with sickle cell disease increased globally by 13·7% (95% uncertainty interval 11·1-16·5), to 515 000 (425 000-614 000), primarily due to population growth in the Caribbean and western and central sub-Saharan Africa. The number of people living with sickle cell disease globally increased by 41·4% (38·3-44·9), from 5·46 million (4·62-6·45) in 2000 to 7·74 million (6·51-9·2) in 2021. We estimated 34 400 (25 000-45 200) cause-specific all-age deaths globally in 2021, but total sickle cell disease mortality burden was nearly 11-times higher at 376 000 (303 000-467 000). In children younger than 5 years, there were 81 100 (58 800-108 000) deaths, ranking total sickle cell disease mortality as 12th (compared to 40th for cause-specific sickle cell disease mortality) across all causes estimated by the GBD in 2021. INTERPRETATION: Our findings show a strikingly high contribution of sickle cell disease to all-cause mortality that is not apparent when each death is assigned to only a single cause. Sickle cell disease mortality burden is highest in children, especially in countries with the greatest under-5 mortality rates. Without comprehensive strategies to address morbidity and mortality associated with sickle cell disease, attainment of SDG 3.1, 3.2, and 3.4 is uncertain. Widespread data gaps and correspondingly high uncertainty in the estimates highlight the urgent need for routine and sustained surveillance efforts, further research to assess the contribution of conditions associated with sickle cell disease, and widespread deployment of evidence-based prevention and treatment for those with sickle cell disease. FUNDING: Bill & Melinda Gates Foundation
    corecore