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Abstract. Resilience of the built environment, particularly in complex build-
ings, is strictly related to the effectiveness of systems and sub-systems that
provide the expected features to manage risk scenarios in routine and non-
routine conditions. In this perspective, maintenance is therefore a key factor to
assure building resilience by keeping systems and equipment in the required
operational state. Risk management can be empowered if system resilience and
disruptive events are monitored in real-time, and, to this aim, proactive main-
tenance can nowadays monitor systems resilience with innovative digital tools.
More specifically, proactive maintenance, through Industry 4.0 (I4.0) tools,

can enact control strategies for mitigating both endogenous risks – such as
equipment failure, aging and obsolesce not always deeply investigated in
building sector – and exogenous risks.
Anticipation of disruptive events of systems and control of endogenous risks

is possible thanks the introduction of IoT and machine learning tools which may
allow to modify the traditional corrective maintenance in the direction of a
proactive maintenance approach.
Aim of this paper is to highlight how proactive maintenance approach, if fully

implemented, and supported by I4.0 tools, can empower resilience of systems in
the building sector.

Keywords: Complex building resilience � Condition-based maintenance �
Proactive maintenance � Information management � I4.0 � Risk management

1 Introduction

1.1 Proactive Maintenance Approaches in Support of Infrastructure
Resilience

Maintenance, in its general exception, ensures system performances over time. Intro-
ducing the exception of proactivity, through real-time data management, maintenance
can dynamically support in advance the actions taken in order to:

– prevent the occurrence of a disruptive event;
– monitor the system status, alerting if performances are reaching a critical threshold.
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Actual proactive maintenance application needs:

– a real-time data flow management;
– systems able to process real-time data and learn in order to obtain dynamically

system predictions and select responding actions.

These conditions can be supported by enabling technologies proposed by Industry
4.0 (I4.0). Through them, by processing a huge amount of data over a limited time
frame, proactive maintenance can:

– describe the assets status/performance in a relative short period;
– contribute to highlight the risks of the disruptive events deriving from internal &

external hazards.

In this way, proactive maintenance, seen as strategy which describes in advance
assets current and possible future status, can empower systems resilience in complex
buildings, by dealing with actions - such as anticipate, resist, adapt, react and adjust
(ARARA) [1], which withstand the possible changes due to the progressive degrada-
tion and the abrupt failures of systems.

Innovation, in the traditional maintenance strategies of complex buildings, consists
in the application of IoT, machine learnings and big data - already used in industrial
sector – in the management of systems to empower complex buildings resilience.

This paper shows an application of a methodology, tested for the proactive
maintenance of equipment, which support the operations of hospital buildings.

2 Complex Systems Resilience Management in the Building
Sector

2.1 Current Complex Systems Resilience Approaches in Building Sector

In management of complex buildings, especially where criticalities of systems must be
carefully considered, a risk management framework (based on: context analysis, risk
assessment, taking control measures, monitoring and review, communication and
training) is highly recommended in order to increase their resilience.

Currently, the major attention of risk management seems to focus on natural haz-
ards related to earthquakes, fire, climate change, rather than to the effects of technical
events, apparently less dangerous, such as service equipment faults, aging of the
systems, cyber-attacks of ICT system or infrastructure incorrect use and so on.

However, these effects are very often those that constitute the principal and most
frequent highly-impacting causes in the loss of performance for the systems, so, even
on these factors should be necessary to develop a resilience strategy.

By analysing the current literature (Table 1), resilience in complex building man-
agement starts to be a hot-topic, investigated from different points of view, in particular
those related to some strategic actions (such as anticipate, resist, adapt, react, adjust)
and managed with the support of some dynamic tools.
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The investigated references highlight some issues:

– The 5 resilience actions (ARARA) are never considered all together at the same
time;

– Resilience is mainly assessed through qualitative tools rather than quantitative
methods;

– Resilience can benefit through real-time data collection and elaboration system;
– Resilience is mainly considered in relation to risks depending on external high-

impact events, rather than to those depending on the outage of equipment;
– Maintenance is normally not considered as a strategy to improve system resilience.

2.2 Proactive Maintenance for Resilience Empowerment

The literature analysis highlights how proactive maintenance strategy may be one of
the possible measures for the improvement of the resilience of complex buildings, by
the management of:

– the effectiveness of the systems considered as control measures for external hazards
– the hazards related to aging, degrading patterns and disruptive faults of the systems

themselves.

In this regard, proactiveness can innovate the traditional resilience approach (Fig. 1
– part A) by anticipating the prediction of the time of failures through the dynamic
analysis of real time data enabled by technologies, such as big data, IoT and machine
learnings.

Figure 1 shows the representation of the resilience of a system highlighting the
ARARA actions in relation to a disruptive event. The resilience curve can be repre-
sented through many control functions related to reliability, availability, resistance and
others [1]. The critic threshold represents the minimum level of the service that the
complex buildings can stand. This critic threshold doesn’t necessarily coincide with the

Fig. 1. Resilience approach in traditional (A) and innovative (B) approach
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default state in which the complex building doesn’t comply with its intended purpose.
After the disruptive event, the fragile phases of complex buildings are represented by
the vulnerable, disrupted and recoverable phases.

By applying proactive maintenance, supported by I4.0 tools, the typical resilience
actions can be empowered:

– Anticipate can be activated through an effective management of information flows,
supported by IoT and sensors deployment;

– Resist can be supported by monitoring tools, such as automated feedback;
– Adapt and React can be favored by a support from machine learnings – data-driven

model, physical based model and hybrid model – that can help the decision making
process. Furthermore, also operational activities may be supported for instance in
providing spare parts with 3d printers which can be used for the production of
components suddenly necessary;

– Adjust can be reached through digital twin [7], platforms and database deployment;

The analysis of the wide current literature (Table 2) highlights the central role of
IoT and machine learning in the practice of proactivity. In particular, from the per-
spective of IoT (Table 2):

– considering the IoT levels (sensors level, communication level and service level),
some approaches can be useful for system performance analysis. The big data flow
passes through the three different levels, facilitating system prediction analysis
and/or performance assessment;

– in the service level data are elaborated and stored. These applications are currently
already available also in cloud solutions: PaaS, SaaS and PMaaS, through which
proactiveness can be offered as a service;

– services provided through IoT are offered, at present, through data storage form –

SaaS, DbaaS – and data analytics form too – BiaaS, BfaaS and FaaS.

Table 2. Comparison table of IoT components is service layer offered as proactive tools.

Authors Maintenance
purpose

IoT components

Evaluation of Predictive-Maintenance-as-a-Service
Business Models in the Internet of Things. Zoll et al.
(2018)

PmaaS Cloud analytics

Software as a Service. Buxmann et al. (2008) PmaaS Cloud analytics
Tradeoffs between performance and security of
cryptographic primitives used in storage as a service for
cloud computing. Patel et al. (2012)

SaaS Cloud storage

Bridging data-capacity gap in big data storage. Bhat
et al. (2017)

DbaaS Cloud storage
and database

Cloud and IoT-based emerging services systems.
Sharma et al. (2018)

BiaaS,
Bfaas, DaaS

Cloud analytics

(continued)
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From the point of view of machine learnings (Table 3):

– transferred data in an IoT architecture are elaborated in a machine learning tool,
which can be deployed in a service layer, which provides a system performance
prediction.

– different kinds of machine learning (ML) tools can be used, but those which are
referred as data-driven model [10] are the most promising, as they use big data
originated from the specific components of complex building operations, resulting
in more accurate predictions.

The success of an efficient resilience assessment for complex buildings is depen-
dent on an architecture for information management flow, which focuses its strategy on
innovative anticipating actions (Fig. 1 – part B). In the traditional approach, collected

Table 2. (continued)

Authors Maintenance
purpose

IoT components

Cloud-enabled prognosis for manufacturing. Gao et al.
(2015)

MaaS Cloud analytics

Failure as a service (faas): A cloud service for large-
scale, online failure drills. Gunawi et al. (2011)

FaaS Cloud analytics
and storage

Machine learning for predictive maintenance: A
multiple classifier approach. Susto et al. (2015)

FaaS Cloud analytics

Smart technologies with wireless sensor networks.
Dener and Bostancıo˘glu (2015)

PmaaS Cloud analytics

Timed verification of machine-to-machine
communications. Gharbi et al. (2014)

PmaaS Cloud analytics

Emerging trends, issues and challenges in Internet of
Things, Big Data and cloud computing. Kobusińska
et al. (2018)

PmaaS Multi-Cloud

Deadline‐constrained coevolutionary genetic algorithm
for scientific workflow scheduling in cloud computing.
Liu et al. (2017)

PmaaS Multi-Cloud

Networking protocols and standards for internet of
things. Salman and Baset (2012)

PmaaS Multi-Cloud

Development of an earth observation cloud platform in
support to water resources monitoring. Bucur et al.
(2018)

PmaaS Cloud analytics
and storage

Business Integration/Intelligent-as-a-Service: BiiaS, Business framework-as-a-Service: BfaaS,
Database-as-a-service: DbaaS, Failure-as-a-Service: FaaS, Predictive-Maintenance-as-a-
Service: PmaaS, Software-as-a-Service: SaaS.
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Table 3. Comparison table of machine learning tools for a data-driven model.

Authors Information
sources

Goal ML

Multiple fault separation and detection by
joint subspace learning for the health
assessment of wind turbine gearboxes. Du
et al. (2017)

Expert
knowledge,
Sensor data

Identify fault
patterns

JSL

A novel approach for data-driven process and
condition monitoring systems on the example
of mill-turn centers. Kißkalt et al. (2017)

Sensor data Degradation
pattern recognition

HMM

Prognostics and health management: A
review of vibration based bearing and gear
health indicators. Wang et al. (2018)

Sensor data Life prediction of
system

HMM

A data-driven method for estimating the
remaining useful life of a composite drill
pipe. Lahmadi et al. (2018)

Sensor data RULs prediction
of system

RNN

Intelligent health monitoring of machine
bearings based on feature extraction.
Chalouli et al. (2017)

Sensor data Fault diagnosis KM, KM

Equipment Sub-system Extraction and its
Application in Predictive Maintenance. Zhao
et al. (2018)

Sensor data Fault detection HC

An Industrial Case Study Using Vibration
Data and Machine Learning to Predict Asset
Health. Amihai et al. (2018)

Sensor data Prediction of asset
health

RF

(WIP) Correlation-Driven Service Event
Routing for Predictive Industrial
Maintenance. Zhu et al. (2018)

Sensor data Prediction of
system fault

ECA

Tool wear condition monitoring based on
continuous wavelet transform and blind
source separation. Benkedjouh et al. (2018)

Sensor data Prediction of wear
in milling
operations

CWT

Data-driven prognostic method based on
Bayesian approaches for direct remaining
useful life prediction. Mosallam et al. (2014)

Nasa
prognostic
center dataset

RULs prediction
of critical
components

KM

Prognostics of multiple failure modes in
rotating machinery using a pattern-based
classifier and cumulative incidence functions.
Ragab et al. (2019)

Sensor data RULs prediction
of critical
components

ANN,
SVM

Remaining useful life prediction using
prognostic methodology based on logical
analysis of data and Kaplan–Meier
estimation. Ragab et al. (2016)

Sensor data Survival analysis KME

(continued)
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Table 3. (continued)

Authors Information
sources

Goal ML

Vehicle remote health monitoring and
prognostic maintenance system. Shafi et al.
(2018)

Sensor data Fault prediction for
subsystems

DT,
SVM,
KNN,
RF

A Simple State-Based Prognostic Model for
Filter Clogging. Skaf et al. (2015)

Sensor data Detect filter
clogging

HMM

Machine learning for predictive maintenance
of industrial machines using IoT sensor data.
Kanawaday et Sane (2017)

Sensor data Prediction of
failures and quality
defects

ARIMA

Machine Learning approach for Predictive
Maintenance in Industry 4.0. Paolanti et al.
(2018)

Sensor data,
Maintenance
logs

Fault prediction RF

Predicting tool wear with multi-sensor data
using deep belief networks. Chen et al.
(2018)

Sensor data Prediction of wear
system

DBN,
ANN,
SVM

Early fault detection of machine tools based
on deep learning and dynamic identification.
Luo et al. (2019)

Sensor data Fault detection DL

A research study on unsupervised machine
learning algorithms for early fault detection
in predictive maintenance. Amruthnath et
Gupta (2018)

Historical
data, Sensor
data

Fault detection PCA,
HC, KF,
FA

On the use of machine learning methods to
predict component reliability from data-
driven industrial case studies. Alsina et al.
(2018)

Sensor data,
Equations

Reliability
estimation

RF, LR,
SVM,
ANN

Thermal power generation fault diagnosis
and prediction model based on deep learning
and multimedia systems. Chen et al. (2018)

Historical
dataset

Fault diagnosis DL, FA

Towards online data-driven prognostics
system. Elattar et al. (2018)

Sensor data Online prognostics
system

DL, KF

Machine prognostics based on sparse
representation model. Ren et al. (2018)

Sensor data Estimation of
machines life

SR, HC

Artificial neural network: ANN, Auto Regressive Integrated Moving Average: ARIMA, Blind
source separation: BSS, Continuous wavelet transform: CWT, Deep Belief Network: DBN,
Decision trees: DT, Deep Learning: DL, Event correlation algorithm: ECA,, Fuzzy Algorithm:
FA, Health Indicator: HI, Hidden Markov Model: HMM, Hierarchy clustering: HC, Kalman
filter: KF, K-Means: KM, Kaplan-Meier estimation: KME, Nearest neighbour: KNN, Joint
subspace learning: JSL, Linear regression: LR, Principal Component Analysis: PCA,
Recurrent Neural Network: RNN, Random forest: RF, Sparse representation: SR, Support
vector Machine: SVM.
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data are used to propose a description of the system. However, the system may be
changed during the observation period, causing an outdated description, so a new data
acquisition may be necessary. This requires new data collection. In the real time
approach, the continuous collection of data, offered by big data, can optimize the time
between asset monitoring and performance description (x ! ~y1) and behavior predic-
tions over a long period (x ! ~y2) within a certain accuracy and uncertainty (Fig. 2).

By adopting such tools, complex buildings management can display proactiveness,
by improving the accuracy of these predictions.

3 Proposal of a Proactive Maintenance Framework
for Dynamic Information Management of Complex
Building Resilience

On the basis of the above described innovative scenario, this paper presents a research
aiming to develop a proactive maintenance procedure for complex building. Innovation
is offered by the opportunity of taking advantage of data-driven model in the building
sector, to develop a proactive approach, mainly used in the industrial sector.

Proactive maintenance in complex buildings - such as hospitals, airports, stations
and office buildings – supported by IoT and machine learnings, can have an appropriate
application especially in critical systems (such as Heating, ventilation, air conditioning
& refrigeration – HVACR, electrical, ICT, conveying, plumbing and fire protection). In
addition, the inclusion of I4.0 tools can integrate the existing supervisory systems, such
as Supervisory Control and Data Acquisition, Building Management System (BMS),
Enterprise Resource Planning, Computerized Maintenance Management System and
Information System (SI). When big data are stored, in a physical database or in a cloud
storage, they can be analyzed through a machine learning tool aiming to build a data-
driven model.

Fig. 2. Acquired information from an asset with traditional and innovative approach.
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Among the current data-drive models, the Recurrent Neural Network (RNN) seems
to be the most promising one for its capacity to: store useful data; remember the history
related to normal behavior of assets; ignore the irrelevant information.

The conditions for the use of RNN is to have a labelled benchmark dataset, in
which:

– failures of assets are registered (typically performed in a SI);
– failures are abundant over a period, so that a failure pattern can be recognized;
– different variables, for normal and abnormal behavior, in the form of big data, are

continuously and massively acquired in time laps of 1-15 min;
– at least a reasonable amount of data is available (typically 1 year or more of stored

data to be split in 70–80% of trainset and 30–20% of testset).

RNN architecture is composed of a multi-structure of neurons which elaborate,
according several loops, the acquired information (such as monitored temperature and
electrical values, typically tracked by control systems). Vibration, electric and tem-
perature sensors can be used to collect data and transfer it in a preprocessing phase.

Acquired data are then transformed - according to Root Mean Square and Kurtosis
value or Fourier Transform - and stored in relational tables in the form of numeric
values. The process of prediction with a RNN is composed of some steps: (i) pre-
processing phase to transform input big data into output vectors to further feed RNN;
(ii) a data normalization phase through a MinMax Scaling technique to have more
uniformed dataset. The normalization is needed, in the learning process, especially if
several series of different amplitude are recorded through sensors; (iii) train phase;
(iv) test phase.

If RNN needs to be used to model for long-term dependencies, it can be structured
as a Long Short-Term Memory RNN network (LSTM) in Fig. 3.

LSTM have the form of a chain of consequential modules (Unit State) of neural
network, with the main difference of LSTM consisting in Units of 4 neural network
layers, interacting according special gates.

In each LSTM Unit there is a horizontal information flow, like a conveyor belt
where data are processed in the entire chain. Each LSTM Unit State has three gates
where an input gate controls if the unit memory is updated, a forget gate monitors if the
unit memory is reset to zero and an output gate verifies if the information of the current
unit state is made visible. All the three gates use a sigmoid activation function to
describe how much of each component should be transmitted. A value of 0 refers to not
letting through any value, while a value of 1 means letting through the value, in order
to make the model differentiable.

The desired output of LSTM is to know the time-to-failure of a HVAC system,
according to the change of input variable over the time, according its operative
performance.

The knowledge of this variable allows to further implement strategies for
improving system resilience and reducing risks.

248 F. Rota et al.



4 Conclusion

Resilience in complex buildings represents a hot topic in the correct management of the
critical systems. Innovation in building resilience can nowadays be leveraged through
IoT and machine learning by enabling proactive maintenance.

Proactive maintenance, seen as an innovative approach in the construction sector,
can introduce in the management of complex buildings the opportunity to anticipate
failures and possible consequent changes in the hazard framework or in the effec-
tiveness of the control measures, which could jeopardize systems resilience.

Applications of proactive maintenance approach to increase building resilience can
be performed in the management strategies of different complex buildings (such as
hospitals, airports, stations, warehouse, etc.…) especially where equipment are inten-
sively used in daily operations and play a key role in resilience performances.

Current IoT and machine learnings tools, which exploit data extracted directly from
the systems, can help to build a proactive strategy, which pursues anticipation
(knowledge, decision, actions), that can effectively improve the robustness of resilience
plans empowered through enabling technologies that support resist, absorb, react and
adapt actions.
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