173 research outputs found

    Peptide-directed co-assembly of nanoprobes on multimaterial patterned solid surfaces

    Get PDF
    This is the published version. Copyright 2012 Royal Society of ChemistryBiocombinatorially selected solid-binding peptides, through their unique material affinity and selectivity, are a promising platform for building up complex hierarchical assemblies of nanoscale materials and molecular probes, targeted to specific practical solid surfaces. Here, we demonstrate the material-specific characteristics of engineered gold-binding and silica-binding peptides through co-assembly onto micro- and nano-patterned gold surfaces on silica substrates. To build hierarchical nanostructures on patterned solid surfaces, we utilize peptides as molecular tools and monitor their behavior by either conjugating biotin to them for specific affinity to streptavidin-coated QDot nanoparticles or labelling them with small fluorescent labels. This biomimetic peptide-based approach could be used as an alternative to conventional chemical coupling and surface functionalization techniques with substantial advantages, allowing simultaneous assembly of two or more inorganic nano-entities and/or molecular probes onto patterned inorganic solid substrates. The results have significant implications in a wide range of potential applications, including controlled assembly of hybrid nanostructures in bionanophotonic and biosensing devices

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    Identification of Critical Transcriptomic Signaling Pathways in Patients with H Syndrome and Rosai-Dorfman Disease

    Get PDF
    Biallelic mutations in SLC29A3 cause histiocytosis-lymphadenopathy plus syndrome, also known as H syndrome (HS). HS is a complex disorder, with ~ 25% of patients developing autoinflammatory complications consisting of unexplained fevers, persistently elevated inflammatory markers, and unusual lymphadenopathies, with infiltrating CD68+, S100+, and CD1a− histiocytes, resembling the immunophenotype found in Rosai-Dorfman disease (RDD). We investigated the transcriptomic profiles of monocytes, non-activated (M0), classically activated (M1), and alternatively activated macrophages (M2) in two patients with HS, one without autoinflammatory (HS1) and one with autoinflammatory complications (HS2). RNA sequencing revealed a dysregulated transcriptomic profile in both HS patients compared to healthy controls (HC). HS2, when compared to HS1, had several differentially expressed genes, including genes associated with lymphocytic-histiocytic predominance (e.g. NINL) and chronic immune activation (e.g. B2M). The transcriptomic and cytokine profiles of HS patients were comparable to patients with SAID with high levels of TNF. SERPINA1 gene expression was found to be upregulated in all patients studied. Moreover, higher levels of IFNγ were found in the serum of both HS patients when compared to HC. Gene ontology (GO) enrichment analysis of the DEGs in HS patients revealed the terms “type I IFN,” “IFNγ signaling pathway,” and “immune responses” as the top 3 most significant terms for monocytes. Gene expression analysis of lymph node biopsies from sporadic and H syndrome-associated RDD suggests common underlying pathological process. In conclusion, monocytes and macrophages from both HS patients showed transcriptomic profiles similar to SAIDs and also uniquely upregulated IFNγ signature. These findings may help find better therapeutic options for this rare disorder

    Evidence of B Cell Clonality and Investigation Into Properties of the IgM in Patients With Schnitzler Syndrome

    Get PDF
    The Schnitzler Syndrome (SchS) is an acquired, autoinflammatory condition successfully treated with IL-1 inhibition. The two main defining features of this late-onset condition are neutrophilic urticarial dermatoses (NUD) and the presence of an IgM monoclonal component. While the former aspect has been extensively studied in this disease setting, the enigmatic paraproteinaemia and its potential consequential effects within SchS, has not previously been thoroughly addressed. Previous studies analyzing clonal B cell repertoires have largely focused on autoimmune disorders such as Systemic Lupus Erythematous (SLE) and hematological malignancies such as Chronic Lymphocytic Leukaemia (CLL), where B-cell clonality is central to disease pathology. The present study uses next-generation sequencing to provide detailed insight into aspects of B cell VDJ recombination and properties of the resulting immunoglobulin chains. An overview of IgH regional dynamics in 10 SchS patients, with a particular focus on CDR3 sequences and VDJ gene usage is reported, highlighting the presence of specific B cell expansions. Protein microarray detected a substantial proportion of autoreactive IgM to nuclear target proteins, though a single universal target was not identified. Together, these genetic and functional findings impart new understanding into this rare disorder

    Understanding the potential in vitro modes of action of bis(β‐diketonato) oxovanadium(IV) complexes

    Get PDF
    To understand the potential in vitro modes of action of bis(β-diketonato) oxovanadium(IV) complexes, nine compounds of varying functionality have been screened using a range of biological techniques. The antiproliferative activity against a range of cancerous and normal cell lines has been determined, and show these complexes are particularly sensitive against the lung carcinoma cell line, A549. Annexin V (apoptosis) and Caspase-3/7 assays were studied to confirm these complexes induce programmed cell death. While gel electrophoresis was used to determine DNA cleavage activity and production of reactive oxygen species (ROS), the Comet assay was used to determine induced genomic DNA damage. Additionally, Förster resonance energy transfer (FRET)-based DNA melting and fluorescent intercalation displacement assays have been used to determine the interaction of the complexes with double strand (DS) DNA and to establish preferential DNA base-pair binding (AT versus GC)

    Progress in particle-based multiscale and hybrid methods for flow applications

    Get PDF

    A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society

    Get PDF
    Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative–the IMiLI–is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators–learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators–learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships–a global societally relevant microbiology education ecosystem–in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us–individuals/communities/nations/the human world–and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091–1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.http://www.wileyonlinelibrary.com/journal/mbt2hj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-01:No povertySDG-02:Zero HungerSDG-03:Good heatlh and well-beingSDG-04:Quality EducationSDG-06:Clean water and sanitationSDG-07:Affordable and clean energySDG-08:Decent work and economic growthSDG-12:Responsible consumption and productionSDG-13:Climate actionSDG-14:Life below wate

    An investigation of micro structure/property relationships in dissimilar welds between martensitic and austenitic stainless steels

    No full text
    WOS: 000221395000007The metallurgical characteristics. tensile, hardness, toughness and corrosion resistance of dissimilar welds between X5CrNi18-10 grade austenitic and X20CrMo13 grade martensitic stainless steel have been evaluated. Both austenitic and duplex stainless steel electrodes were used to join this combination, using multipass manual metal are welding process. Defect free welds were made with each welding consumable. It was found that the tensile strength of weldment, which was produced by duplex electrode (E2209-17), was slightly lower than that of austenitic electrode (E308L-16). The toughness of the both E2209-17 and E308L-16 deposits was acceptable even at low temperature regardless of heat input. Hardness was increased in both welds made with E2209-17 duplex and E308L-16 austenitic electrode along the X20CrMo13/weld metal fusion boundary due to heat annealing and then following high cooling rate. The pitting corrosion resistance of the weld metal made with E308L-16 and E2209-17 filler metal was found acceptable. Although, heat affected zone in the weldment and X20CrMo13 base metal were affected by electrolytic corrosion. This investigation has shown that both filler metals can be used to join austenitic stainless steel to the martensitic stainless steel. (C) 2003 Elsevier Ltd. All rights reserved
    corecore