646 research outputs found

    Time-dependent properties of proton decay from crossing single-particle metastable states in deformed nuclei

    Get PDF
    A dynamical study of the decay of a metastable state by quantum tunneling through an anisotropic, non separable, two-dimensional potential barrier is performed by the numerical solution of the time-dependent Schrodinger equation. Initial quasi- stationary proton states are chosen in the framework of a deformed Woods-Saxon single-particle model. The decay of two sets of states corresponding to true and quasi levels-crossing is studied and the evolution of their decay properties as a function of nuclear deformation is calculated around the crossing point. The results show that the investigation of the proton decay from metastable states in deformed nuclei can unambiguously distinguish between the two types of crossing and determine the structure of the nuclear states involved.Comment: 15 pages, 9 figures, submitted to Phys. Rev.

    Hippocampal volume in early onset depression

    Get PDF
    BACKGROUND: Abnormalities in limbic structures have been implicated in major depressive disorder (MDD). Although MDD is as common in adolescence as in adulthood, few studies have examined youth near illness onset in order to determine the possible influence of atypical development on the pathophysiology of this disorder. METHODS: Hippocampal volumes were measured in 17 MDD subjects (age = 16.67 ± 1.83 years [mean ± SD]; range = 13 – 18 years) and 17 age- and sex-matched healthy controls (16.23 ± 1.61 years [mean ± SD]; 13 – 18 years) using magnetic resonance imaging (MRI). RESULTS: An analysis of covariance revealed a significant difference between MDD and control subjects (F = 8.66, df = 1, 29, P = 0.006). This was more strongly localized to the left hippocampus (P = 0.001) than the right hippocampus (P = 0.047). CONCLUSIONS: Our findings provide new evidence of abnormalities in the hippocampus in early onset depression. However, our results should be considered preliminary given the small sample size studied

    Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression

    Get PDF
    Fractional anisotropy anomalies occurring in the white matter tracts in the brains of depressed patients may reflect microstructural changes underlying the pathophysiology of this disorder. We conducted a meta-analysis of fractional anisotropy abnormalities occurring in major depressive disorder using voxel-based diffusion tensor imaging studies. Using the Embase, PubMed and Google Scholar databases, 89 relevant data sets were identified, of which 7 (including 188 patients with major depressive disorder and 221 healthy controls) met our inclusion criteria. Authors were contacted to retrieve any additional data required. Coordinates were extracted from clusters of significant white matter fractional anisotropy differences between patients and controls. Relevant demographic, clinical and methodological variables were extracted from each study or obtained directly from authors. The meta-analysis was carried out using Signed Differential Mapping. Patients with depression showed decreased white matter fractional anisotropy values in the superior longitudinal fasciculus and increased fractional anisotropy values in the fronto-occipital fasciculus compared to controls. Using quartile and jackknife sensitivity analysis, we found that reduced fractional anisotropy in the left superior longitudinal fasciculus was very stable, with increases in the right fronto-occipital fasciculus driven by just one study. In conclusion, our meta-analysis revealed a significant reduction in fractional anisotropy values in the left superior longitudinal fasciculus, which may ultimately play an important role in the pathology of depression

    Failure to Modulate Attentional Control in Advanced Aging Linked to White Matter Pathology

    Get PDF
    Advanced aging is associated with reduced attentional control and less flexible information processing. Here, the origins of these cognitive effects were explored using a functional magnetic resonance imaging task that systematically varied demands to shift attention and inhibit irrelevant information across task blocks. Prefrontal and parietal regions previously implicated in attentional control were recruited by the task and most so for the most demanding task configurations. A subset of older individuals did not modulate activity in frontal and parietal regions in response to changing task requirements. Older adults who did not dynamically modulate activity underperformed their peers and scored more poorly on neuropsychological measures of executive function and speed of processing. Examining 2 markers of preclinical pathology in older adults revealed that white matter hyperintensities (WMHs), but not high amyloid burden, were associated with failure to modulate activity in response to changing task demands. In contrast, high amyloid burden was associated with alterations in default network activity. These results suggest failure to modulate frontal and parietal activity reflects a disruptive process in advanced aging associated with specific neuropathologic processes

    Zicam-Induced Damage to Mouse and Human Nasal Tissue

    Get PDF
    Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc), a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction

    Signalling mechanisms mediating Zn2+-induced TRPM2 channel activation and death cell in microglial cells

    Get PDF
    Excessive Zn2+ causes brain damage via promoting ROS generation. Here we investigated the role of ROS-sensitive TRPM2 channel in H2O2/Zn2+-induced Ca2+ signalling and cell death in microglial cells. H2O2/Zn2+ induced concentration-dependent increases in cytosolic Ca2+ concentration ([Ca2+]c), which was inhibited by PJ34, a PARP inhibitor, and abolished by TRPM2 knockout (TRPM2-KO). Pathological concentrations of H2O2/Zn2+ induced substantial cell death that was inhibited by PJ34 and DPQ, PARP inhibitors, 2-APB, a TRPM2 channel inhibitor, and prevented by TRPM2-KO. Further analysis indicate that Zn2+ induced ROS production, PARP-1 stimulation, increase in the [Ca2+]c and cell death, which were suppressed by chelerythrine, a protein kinase C inhibitor, DPI, a NADPH-dependent oxidase (NOX) inhibitor, GKT137831, a NOX1/4 inhibitor, and Phox-I2, a NOX2 inhibitor. Furthermore, Zn2+-induced PARP-1 stimulation, increase in the [Ca2+]c and cell death were inhibited by PF431396, a Ca2+-sensitive PYK2 inhibitor, and U0126, a MEK/ERK inhibitor. Taken together, our study shows PKC/NOX-mediated ROS generation and PARP-1 activation as an important mechanism in Zn2+-induced TRPM2 channel activation and, TRPM2-mediated increase in the [Ca2+]c to trigger the PYK2/MEK/ERK signalling pathway as a positive feedback mechanism that amplifies the TRPM2 channel activation. Activation of these TRPM2-depenent signalling mechanisms ultimately drives Zn2+-induced Ca2+ overloading and cell death
    corecore