1,377 research outputs found
Diffusion in multiscale spacetimes
We study diffusion processes in anomalous spacetimes regarded as models of
quantum geometry. Several types of diffusion equation and their solutions are
presented and the associated stochastic processes are identified. These results
are partly based on the literature in probability and percolation theory but
their physical interpretation here is different since they apply to quantum
spacetime itself. The case of multiscale (in particular, multifractal)
spacetimes is then considered through a number of examples and the most general
spectral-dimension profile of multifractional spaces is constructed.Comment: 23 pages, 5 figures. v2: discussion improved, typos corrected,
references adde
Electrical properties of a-antimony selenide
This paper reports conduction mechanism in a-\sbse over a wide range of
temperature (238K to 338K) and frequency (5Hz to 100kHz). The d.c. conductivity
measured as a function of temperature shows semiconducting behaviour with
activation energy E= 0.42 eV. Thermally induced changes in the
electrical and dielectric properties of a-\sbse have been examined. The a.c.
conductivity in the material has been explained using modified CBH model. The
band conduction and single polaron hopping is dominant above room temperature.
However, in the lower temperature range the bipolaron hopping dominates.Comment: 9 pages (RevTeX, LaTeX2e), 9 psfigures, also at
http://pu.chd.nic.in/ftp/pub/san16 e-mail: gautam%[email protected]
Retarding Sub- and Accelerating Super-Diffusion Governed by Distributed Order Fractional Diffusion Equations
We propose diffusion-like equations with time and space fractional
derivatives of the distributed order for the kinetic description of anomalous
diffusion and relaxation phenomena, whose diffusion exponent varies with time
and which, correspondingly, can not be viewed as self-affine random processes
possessing a unique Hurst exponent. We prove the positivity of the solutions of
the proposed equations and establish the relation to the Continuous Time Random
Walk theory. We show that the distributed order time fractional diffusion
equation describes the sub-diffusion random process which is subordinated to
the Wiener process and whose diffusion exponent diminishes in time (retarding
sub-diffusion) leading to superslow diffusion, for which the square
displacement grows logarithmically in time. We also demonstrate that the
distributed order space fractional diffusion equation describes super-diffusion
phenomena when the diffusion exponent grows in time (accelerating
super-diffusion).Comment: 11 pages, LaTe
Infrared spectroscopy of phytochrome and model pigments
Fourier-transform infrared difference spectra between the red-absorbing and far-red-absorbing forms of oat phytochrome have been measured in H2O and 2H2O. The difference spectra are compared with infrared spectra of model compounds, i.e. the (5Z,10Z,15Z)- and (5Z,10Z,15E)-isomers of 2,3,7,8,12,13,17,18-octaethyl-bilindion (Et8-bilindion), 2,3-dihydro-2,3,7,8,12,13,17,18-octaethyl-bilindion (H2Et8-bilindion), and protonated H2Et8-bilindion in various solvents. The spectra of the model compounds show that only for the protonated forms can clear differences between the two isomers be detected. Since considerable differences are present between the spectra of Et8-bilindion and H2Et8-bilindion, it is concluded that only the latter compound can serve as a model system of phytochrome. The 2H2O effect on the difference spectrum of phytochrome supports the view that the chromophore in red-absorbing phytochrome is protonated and suggests, in addition, that it is also protonated in far-red-absorbing phytochrome. The spectra show that protonated carboxyl groups are influenced. The small amplitudes in the difference spectra exclude major changes of protein secondary structure
Mass coupling and ^3$He in a torsion pendulum
We present results of the and period shift, , for He
confined in a 98% nominal open aerogel on a torsion pendulum. The aerogel is
compressed uniaxially by 10% along a direction aligned to the torsion pendulum
axis and was grown within a 400 m tall pancake (after compression) similar
to an Andronikashvili geometry. The result is a high pendulum able to
resolve and mass coupling of the impurity-limited He over the
whole temperature range. After measuring the empty cell background, we filled
the cell above the critical point and observe a temperature dependent period
shift, , between 100 mK and 3 mK that is 2.9 of the period shift
(after filling) at 100 mK. The due to the He decreases by an order
of magnitude between 100 mK and 3 mK at a pressure of bar. We
compare the observable quantities to the corresponding calculated and
period shift for bulk He.Comment: 8 pages, 3 figure
Order Effects of Ballot Position without Information-Induced Confirmatory Bias
Candidate list positions have been shown to influence decision making when voters have limited candidate information (e.g. Miller and Krosnick, 1998; Brockington, 2003). Here, a primacy advantage is observed due to a greater number of positive arguments generated for early list candidates (Krosnick, 1991). The present study examined list position effects when an absence of information precludes such a confirmatory bias heuristic. We report the first large scale low-information experimental election where candidate position is fully counterbalanced. Seven hundred and twenty participants voted in a mock election where the position of 6 fictitious and meaningless parties was counterbalanced across the electorate. Analysis by position revealed that significantly fewer votes were allocated to the terminal parties (Experiment 1). In addition, Experiment 1 reported preliminary evidence of an alphabetical bias (consistent with Bagley, 1966). However, this positional bias was not present in a methodological replication using six genuine UK political parties (Experiment 2). This suggests that in situations of pure guessing, the heuristic shifts from the primacy benefiting confirmatory bias to an alternative heuristic that prejudices the first and last parties. These findings suggest that whilst the UK general electoral process may be largely immune to positional prejudice, English local elections (in which there can be multiple candidates from the same party) and multiple preference ranking systems (Scottish Local Government and London Mayoral Elections) could be susceptible to both positional and alphabetical biases
Using Satellite-Derived Fire Arrival Times for Coupled Wildfire-Air Quality Simulations at Regional Scales of the 2020 California Wildfire Season
Wildfire frequency has increased in the Western US over recent decades, driven by climate change and a legacy of forest management practices. Consequently, human structures, health, and life are increasingly at risk due to wildfires. Furthermore, wildfire smoke presents a growing hazard for regional and national air quality. In response, many scientific tools have been developed to study and forecast wildfire behavior, or test interventions that may mitigate risk. In this study, we present a retrospective analysis of 1 month of the 2020 Northern California wildfire season, when many wildfires with varying environments and behavior impacted regional air quality. We simulated this period using a coupled numerical weather prediction model with online atmospheric chemistry, and compare two approaches to representing smoke emissions: an online fire spread model driven by remotely sensed fire arrival times and a biomass burning emissions inventory. First, we quantify the differences in smoke emissions and timing of fire activity, and characterize the subsequent impact on estimates of smoke emissions. Next, we compare the simulated smoke to surface observations and remotely sensed smoke; we find that despite differences in the simulated smoke surface concentrations, the two models achieve similar levels of accuracy. We present a detailed comparison between the performance and relative strengths of both approaches, and discuss potential refinements that could further improve future simulations of wildfire smoke. Finally, we characterize the interactions between smoke and meteorology during this event, and discuss the implications that increases in regional smoke may have on future meteorological conditions
The origin of large molecules in primordial autocatalytic reaction networks
Large molecules such as proteins and nucleic acids are crucial for life, yet
their primordial origin remains a major puzzle. The production of large
molecules, as we know it today, requires good catalysts, and the only good
catalysts we know that can accomplish this task consist of large molecules.
Thus the origin of large molecules is a chicken and egg problem in chemistry.
Here we present a mechanism, based on autocatalytic sets (ACSs), that is a
possible solution to this problem. We discuss a mathematical model describing
the population dynamics of molecules in a stylized but prebiotically plausible
chemistry. Large molecules can be produced in this chemistry by the coalescing
of smaller ones, with the smallest molecules, the `food set', being buffered.
Some of the reactions can be catalyzed by molecules within the chemistry with
varying catalytic strengths. Normally the concentrations of large molecules in
such a scenario are very small, diminishing exponentially with their size.
ACSs, if present in the catalytic network, can focus the resources of the
system into a sparse set of molecules. ACSs can produce a bistability in the
population dynamics and, in particular, steady states wherein the ACS molecules
dominate the population. However to reach these steady states from initial
conditions that contain only the food set typically requires very large
catalytic strengths, growing exponentially with the size of the catalyst
molecule. We present a solution to this problem by studying `nested ACSs', a
structure in which a small ACS is connected to a larger one and reinforces it.
We show that when the network contains a cascade of nested ACSs with the
catalytic strengths of molecules increasing gradually with their size (e.g., as
a power law), a sparse subset of molecules including some very large molecules
can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio
- …