1,377 research outputs found

    Diffusion in multiscale spacetimes

    Get PDF
    We study diffusion processes in anomalous spacetimes regarded as models of quantum geometry. Several types of diffusion equation and their solutions are presented and the associated stochastic processes are identified. These results are partly based on the literature in probability and percolation theory but their physical interpretation here is different since they apply to quantum spacetime itself. The case of multiscale (in particular, multifractal) spacetimes is then considered through a number of examples and the most general spectral-dimension profile of multifractional spaces is constructed.Comment: 23 pages, 5 figures. v2: discussion improved, typos corrected, references adde

    Electrical properties of a-antimony selenide

    Full text link
    This paper reports conduction mechanism in a-\sbse over a wide range of temperature (238K to 338K) and frequency (5Hz to 100kHz). The d.c. conductivity measured as a function of temperature shows semiconducting behaviour with activation energy Δ\DeltaE= 0.42 eV. Thermally induced changes in the electrical and dielectric properties of a-\sbse have been examined. The a.c. conductivity in the material has been explained using modified CBH model. The band conduction and single polaron hopping is dominant above room temperature. However, in the lower temperature range the bipolaron hopping dominates.Comment: 9 pages (RevTeX, LaTeX2e), 9 psfigures, also at http://pu.chd.nic.in/ftp/pub/san16 e-mail: gautam%[email protected]

    Retarding Sub- and Accelerating Super-Diffusion Governed by Distributed Order Fractional Diffusion Equations

    Full text link
    We propose diffusion-like equations with time and space fractional derivatives of the distributed order for the kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with time and which, correspondingly, can not be viewed as self-affine random processes possessing a unique Hurst exponent. We prove the positivity of the solutions of the proposed equations and establish the relation to the Continuous Time Random Walk theory. We show that the distributed order time fractional diffusion equation describes the sub-diffusion random process which is subordinated to the Wiener process and whose diffusion exponent diminishes in time (retarding sub-diffusion) leading to superslow diffusion, for which the square displacement grows logarithmically in time. We also demonstrate that the distributed order space fractional diffusion equation describes super-diffusion phenomena when the diffusion exponent grows in time (accelerating super-diffusion).Comment: 11 pages, LaTe

    Infrared spectroscopy of phytochrome and model pigments

    Get PDF
    Fourier-transform infrared difference spectra between the red-absorbing and far-red-absorbing forms of oat phytochrome have been measured in H2O and 2H2O. The difference spectra are compared with infrared spectra of model compounds, i.e. the (5Z,10Z,15Z)- and (5Z,10Z,15E)-isomers of 2,3,7,8,12,13,17,18-octaethyl-bilindion (Et8-bilindion), 2,3-dihydro-2,3,7,8,12,13,17,18-octaethyl-bilindion (H2Et8-bilindion), and protonated H2Et8-bilindion in various solvents. The spectra of the model compounds show that only for the protonated forms can clear differences between the two isomers be detected. Since considerable differences are present between the spectra of Et8-bilindion and H2Et8-bilindion, it is concluded that only the latter compound can serve as a model system of phytochrome. The 2H2O effect on the difference spectrum of phytochrome supports the view that the chromophore in red-absorbing phytochrome is protonated and suggests, in addition, that it is also protonated in far-red-absorbing phytochrome. The spectra show that protonated carboxyl groups are influenced. The small amplitudes in the difference spectra exclude major changes of protein secondary structure

    Mass coupling and Q1ofimpuritylimitednormalQ^{-1} of impurity-limited normal ^3$He in a torsion pendulum

    Full text link
    We present results of the Q1Q^{-1} and period shift, ΔP\Delta P, for 3^3He confined in a 98% nominal open aerogel on a torsion pendulum. The aerogel is compressed uniaxially by 10% along a direction aligned to the torsion pendulum axis and was grown within a 400 μ\mum tall pancake (after compression) similar to an Andronikashvili geometry. The result is a high QQ pendulum able to resolve Q1Q^{-1} and mass coupling of the impurity-limited 3^3He over the whole temperature range. After measuring the empty cell background, we filled the cell above the critical point and observe a temperature dependent period shift, ΔP\Delta P, between 100 mK and 3 mK that is 2.9% of the period shift (after filling) at 100 mK. The Q1Q^{-1} due to the 3^3He decreases by an order of magnitude between 100 mK and 3 mK at a pressure of 0.14±0.030.14\pm0.03 bar. We compare the observable quantities to the corresponding calculated Q1Q^{-1} and period shift for bulk 3^3He.Comment: 8 pages, 3 figure

    Order Effects of Ballot Position without Information-Induced Confirmatory Bias

    Get PDF
    Candidate list positions have been shown to influence decision making when voters have limited candidate information (e.g. Miller and Krosnick, 1998; Brockington, 2003). Here, a primacy advantage is observed due to a greater number of positive arguments generated for early list candidates (Krosnick, 1991). The present study examined list position effects when an absence of information precludes such a confirmatory bias heuristic. We report the first large scale low-information experimental election where candidate position is fully counterbalanced. Seven hundred and twenty participants voted in a mock election where the position of 6 fictitious and meaningless parties was counterbalanced across the electorate. Analysis by position revealed that significantly fewer votes were allocated to the terminal parties (Experiment 1). In addition, Experiment 1 reported preliminary evidence of an alphabetical bias (consistent with Bagley, 1966). However, this positional bias was not present in a methodological replication using six genuine UK political parties (Experiment 2). This suggests that in situations of pure guessing, the heuristic shifts from the primacy benefiting confirmatory bias to an alternative heuristic that prejudices the first and last parties. These findings suggest that whilst the UK general electoral process may be largely immune to positional prejudice, English local elections (in which there can be multiple candidates from the same party) and multiple preference ranking systems (Scottish Local Government and London Mayoral Elections) could be susceptible to both positional and alphabetical biases

    Using Satellite-Derived Fire Arrival Times for Coupled Wildfire-Air Quality Simulations at Regional Scales of the 2020 California Wildfire Season

    Get PDF
    Wildfire frequency has increased in the Western US over recent decades, driven by climate change and a legacy of forest management practices. Consequently, human structures, health, and life are increasingly at risk due to wildfires. Furthermore, wildfire smoke presents a growing hazard for regional and national air quality. In response, many scientific tools have been developed to study and forecast wildfire behavior, or test interventions that may mitigate risk. In this study, we present a retrospective analysis of 1 month of the 2020 Northern California wildfire season, when many wildfires with varying environments and behavior impacted regional air quality. We simulated this period using a coupled numerical weather prediction model with online atmospheric chemistry, and compare two approaches to representing smoke emissions: an online fire spread model driven by remotely sensed fire arrival times and a biomass burning emissions inventory. First, we quantify the differences in smoke emissions and timing of fire activity, and characterize the subsequent impact on estimates of smoke emissions. Next, we compare the simulated smoke to surface observations and remotely sensed smoke; we find that despite differences in the simulated smoke surface concentrations, the two models achieve similar levels of accuracy. We present a detailed comparison between the performance and relative strengths of both approaches, and discuss potential refinements that could further improve future simulations of wildfire smoke. Finally, we characterize the interactions between smoke and meteorology during this event, and discuss the implications that increases in regional smoke may have on future meteorological conditions

    The origin of large molecules in primordial autocatalytic reaction networks

    Get PDF
    Large molecules such as proteins and nucleic acids are crucial for life, yet their primordial origin remains a major puzzle. The production of large molecules, as we know it today, requires good catalysts, and the only good catalysts we know that can accomplish this task consist of large molecules. Thus the origin of large molecules is a chicken and egg problem in chemistry. Here we present a mechanism, based on autocatalytic sets (ACSs), that is a possible solution to this problem. We discuss a mathematical model describing the population dynamics of molecules in a stylized but prebiotically plausible chemistry. Large molecules can be produced in this chemistry by the coalescing of smaller ones, with the smallest molecules, the `food set', being buffered. Some of the reactions can be catalyzed by molecules within the chemistry with varying catalytic strengths. Normally the concentrations of large molecules in such a scenario are very small, diminishing exponentially with their size. ACSs, if present in the catalytic network, can focus the resources of the system into a sparse set of molecules. ACSs can produce a bistability in the population dynamics and, in particular, steady states wherein the ACS molecules dominate the population. However to reach these steady states from initial conditions that contain only the food set typically requires very large catalytic strengths, growing exponentially with the size of the catalyst molecule. We present a solution to this problem by studying `nested ACSs', a structure in which a small ACS is connected to a larger one and reinforces it. We show that when the network contains a cascade of nested ACSs with the catalytic strengths of molecules increasing gradually with their size (e.g., as a power law), a sparse subset of molecules including some very large molecules can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio
    corecore