52 research outputs found

    Radio Frequency (RF) Attenuation Measurements of the Space Shuttle Vehicle

    Get PDF
    Following the loss of Columbia, the Columbia Accident Investigation Board (CAIB) provided recommendations to be addressed prior to Return To Flight (RTF). As a part of CAIB Recommendation 3.4.1 - Ground Based Imagery, new C-band and X-band radars were added to the array of ground-based radars and cameras already in-situ at Kennedy Space Center. Because of higher power density considerations and new operating frequencies, the team of Subject Matter Experts (SMEs) assembled to investigate the technical details of introducing the new radars recommended a series of radio frequency (RF) attenuation tests be performed on the Space Shuttle vehicle to establish the attenuation of the vehicle outer mold line structure with respect to its external RF environment. Because of time and complex logistical constraints, it was decided to split the test into two separate efforts. The first of these would be accomplished with the assistance of the Air Force Research Laboratory (AFRL), performing RF attenuation measurements on the aft section of OV-103 (Discovery) while in-situ in Orbiter Processing Facility (OPF) 3, located at Kennedy Space Center. The second would be accomplished with the assistance of the National Institute of Standards and Technology (NIST) and the electromagnetic interference (EMI) laboratory out of the Naval Air Warfare Center, Patuxent River, Maryland (PAX River), performing RF attenuation measurements on OV-105 (Endeavour) in-situ inside the Space Shuttle Landing Facility (SLF) hangar, also located at Kennedy Space Center. This paper provides a summary description of these efforts and their results

    Electrical Material Property Measurements using a Free-Field, Ultra-Wideband System [Dielectric Measurements]

    Get PDF
    We present nondestructive measurements of material properties using TEM horn antennas and an ultra-wideband measurement system. Time-domain gating and genetic algorithms are used to process the data and extract the dielectric properties of the material under test

    From least action in electrodynamics to magnetomechanical energy -- a review

    Full text link
    The equations of motion for electromechanical systems are traced back to the fundamental Lagrangian of particles and electromagnetic fields, via the Darwin Lagrangian. When dissipative forces can be neglected the systems are conservative and one can study them in a Hamiltonian formalism. The central concepts of generalized capacitance and inductance coefficients are introduced and explained. The problem of gauge independence of self-inductance is considered. Our main interest is in magnetomechanics, i.e. the study of systems where there is exchange between mechanical and magnetic energy. This throws light on the concept of magnetic energy, which according to the literature has confusing and peculiar properties. We apply the theory to a few simple examples: the extension of a circular current loop, the force between parallel wires, interacting circular current loops, and the rail gun. These show that the Hamiltonian, phase space, form of magnetic energy has the usual property that an equilibrium configuration corresponds to an energy minimum.Comment: 29 pages, 9 figures, 65 reference

    Electromagnetic Characteristics of the Soil

    Get PDF
    The electromagnetic characteristics of the soil are discussed in this chapter. The characteristics of porous bedrock, soil medium, and impacts of rain attenuations are also presented. The models of dielectric soil properties are studied with a rigorous focus on the constitutive parameters of subsurface soil medium. Moreover, the permittivity and wavenumber in soil are explained. In addition, the frequency-dependent dielectric properties such as dispersion in soil, absorption characteristic, and penetration depth versus frequency are reviewed. Furthermore, the effective permittivity of soil–water mixture for through-the soil-propagation mechanism is analyzed thoroughly

    Wireless Underground Channel Modeling

    Get PDF
    A comprehensive treatment of wireless underground channel modeling is presented in this chapter. The impacts of the soil on bandwidth and path loss are analyzed. A mechanism for the UG channel sounding and multipath characteristics analysis is discussed. Moreover, novel time-domain impulse response model for WUC is reviewed with the explanation of model parameters and statistics. Furthermore, different types of the through-the-soil wireless communications are surveyed. Finally, the chapter concludes with discussion of the UG wireless statistical model and path loss model for through-the-soil wireless communications in decision agriculture. The model presented in this chapter is also validated with empirical data

    Internet of Things in Water Management and Treatment

    Get PDF
    The goal of the water security IoT chapter is to present a comprehensive and integrated IoT based approach to environmental quality and monitoring by generating new knowledge and innovative approaches that focus on sustainable resource management. Mainly, this chapter focuses on IoT applications in wastewater and stormwater, and the human and environmental consequences of water contaminants and their treatment. The IoT applications using sensors for sewer and stormwater monitoring across networked landscapes, water quality assessment, treatment, and sustainable management are introduced. The studies of rate limitations in biophysical and geochemical processes that support the ecosystem services related to water quality are presented. The applications of IoT solutions based on these discoveries are also discussed

    Stable gold alloy electrodeposits

    No full text

    Coupled predator-prey oscillations in a chaotic food web

    No full text
    Coupling of several predator-prey oscillations can generate intriguing patterns of synchronization and chaos. Theory predicts that prey species will fluctuate in phase if predator-prey cycles are coupled through generalist predators, whereas they will fluctuate in anti-phase if predator-prey cycles are coupled through competition between prey species. Here, we investigate predator-prey oscillations in a long-term experiment with a marine plankton community. Wavelet analysis of the species fluctuations reveals two predator-prey cycles that fluctuate largely in anti-phase. The phase angles point at strong competition between the phytoplankton species, but relatively little prey overlap among the zooplankton species. This food web architecture is consistent with the size structure of the plankton community, and generates highly dynamic food webs. Continued alternations in species dominance enable coexistence of the prey species through a non-equilibrium 'killing-the-winner' mechanism, as the system shifts back and forth between the two predator-prey cycles in a chaotic fashion
    • …
    corecore