12,472 research outputs found
Transport through the intertube link between two parallel carbon nanotubes
Quantum transport through the junction between two metallic carbon nanotubes
connected by intertube links has been studied within the TB method and Landauer
formula. It is found that the conductance oscillates with both of the coupling
strength and length. The corresponding local density of states (LDOS) is
clearly shown and can be used to explain the reason why there are such kinds of
oscillations of the conductances, which should be noted in the design of
nanotube-based devices.Comment: 6 pages, 4 figure
Robust Tensor Analysis with Non-Greedy L1-Norm Maximization
The L1-norm based tensor analysis (TPCA-L1) is recently proposed for dimensionality reduction and feature extraction. However, a greedy strategy was utilized for solving the L1-norm maximization problem, which makes it prone to being stuck in local solutions. In this paper, we propose a robust TPCA with non-greedy L1-norm maximization (TPCA-L1 non-greedy), in which all projection directions are optimized simultaneously. Experiments on several face databases demonstrate the effectiveness of the proposed method
A quantitative assessment of distributions and sources of tropospheric halocarbons measured in Singapore.
This work reports the first ground-based atmospheric measurements of 26 halocarbons in Singapore, an urban-industrial city-state in Southeast (SE) Asia. A total of 166 whole air canister samples collected during two intensive 7 Southeast Asian Studies (7SEAS) campaigns (August-October 2011 and 2012) were analyzed for C1-C2 halocarbons using gas chromatography-electron capture/mass spectrometric detection. The halocarbon dataset was supplemented with measurements of selected non-methane hydrocarbons (NMHCs), C1-C5 alkyl nitrates, sulfur gases and carbon monoxide to better understand sources and atmospheric processes. The median observed atmospheric mixing ratios of CFCs, halons, CCl4 and CH3CCl3 were close to global tropospheric background levels, with enhancements in the 1-17% range. This provided the first measurement evidence from SE Asia of the effectiveness of Montreal Protocol and related national-scale regulations instituted in the 1990s to phase-out ozone depleting substances (ODS). First- and second-generation CFC replacements (HCFCs and HFCs) dominated the atmospheric halocarbon burden with HFC-134a, HCFC-22 and HCFC-141b exhibiting enhancements of 39-67%. By combining near-source measurements in Indonesia with receptor data in Singapore, regionally transported peat-forest burning smoke was found to impact levels of several NMHCs (ethane, ethyne, benzene, and propane) and short-lived halocarbons (CH3I, CH3Cl, and CH3Br) in a subset of the receptor samples. The strong signatures of these species near peat-forest fires were potentially affected by atmospheric dilution/mixing during transport and by mixing with substantial urban/regional backgrounds at the receptor. Quantitative source apportionment was carried out using positive matrix factorization (PMF), which identified industrial emissions related to refrigeration, foam blowing, and solvent use in chemical, pharmaceutical and electronics industries as the major source of halocarbons (34%) in Singapore. This was followed by marine and terrestrial biogenic activity (28%), residual levels of ODS from pre-Montreal Protocol operations (16%), seasonal incidences of peat-forest smoke (13%), and fumigation related to quarantine and pre-shipment (QPS) applications (7%)
Cantilevers-on-membrane design for broadband MEMS piezoelectric vibration energy harvesting
Most MEMS piezoelectric vibration energy harvesters involve either cantilever-based topologies, doubly-clamped beams or membrane structures. While these traditional designs offer simplicity, their frequency response for broadband excitation are typically inadequate. This paper presents a new integrated cantilever-on-membrane design that attempts to both optimise the strain distribution on a piezoelectric membrane resonator and improve the power responsiveness of the harvester for broadband excitation. While a classic membrane-based resonator has the potential to theoretically offer wider operational frequency bandwidth than its cantilever counterpart, the addition of a centred proof mass neutralises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and integrates the merits of both the membrane and the cantilever designs. When experimentally subjected to a band-limited white noise excitation, up to approximately two folds of power enhancement was observed for the new membrane harvester compared to a classic plain membrane device
An Umbrella-Shaped Topology for Broadband MEMS Piezoelectric Vibration Energy Harvesting
While cantilever topologies offer high power responsiveness for MEMS vibration energy harvesting (VEH), they are less robust than multiply clamped or membrane topologies. This paper attempts to address this topological optimisation dilemma by attempting to achieve both high power density and robustness. The proposed umbrella-shaped topology constituents of a single central anchor while the membrane area extends outwards and is further enclosed by a ring of proof mass. Implemented on a 0.5 μm AlN on 10 μm doped Si process, a fabricated device (121 mm2 die area) recorded a peak power of 173 μW (1798 Hz and 0.56 g). The normalised power density compares favourably against the state-of-the-art cantilever piezoelectric MEMS VEH, while not sacrificing robustness. Furthermore, this device offers a broadband response, and it has experimentally demonstrated over 3 times higher band-limited noise induced power density than a cantilevered harvester fabricated using the same process
Quantum size effects on the perpendicular upper critical field in ultra-thin lead films
We report the thickness-dependent (in terms of atomic layers) oscillation
behavior of the perpendicular upper critical field in the
ultra-thin lead films at the reduced temperature (). Distinct
oscillations of the normal-state resistivity as a function of film thickness
have also been observed. Compared with the oscillation, the
shows a considerable large oscillation amplitude and a phase shift. The
oscillatory mean free path caused by quantum size effect plays a role in
oscillation.Comment: 4 pages, 4 figure
Local spin fluctuations in iron-based superconductors: 77Se and 87Rb NMR measurements of Tl0.47Rb0.34Fe1.63Se2
We report nuclear magnetic resonance (NMR) studies of the intercalated iron
selenide superconductor (Tl, Rb)FeSe ( K).
Single-crystal measurements up to 480 K on both Se and Rb nuclei
show a superconducting phase with no magnetic order. The Knight shifts and
relaxation rates increase very strongly with temperature above ,
before flattening at 400 K. The quadratic -dependence and perfect
proportionality of both and data demonstrate their origin in
paramagnetic moments. A minimal model for this pseudogap-like response is not a
missing density of states but two additive contributions from the itinerant
electronic and local magnetic components, a framework unifying the and
data in many iron-based superconductors
- …