11,837 research outputs found

    Transport through the intertube link between two parallel carbon nanotubes

    Full text link
    Quantum transport through the junction between two metallic carbon nanotubes connected by intertube links has been studied within the TB method and Landauer formula. It is found that the conductance oscillates with both of the coupling strength and length. The corresponding local density of states (LDOS) is clearly shown and can be used to explain the reason why there are such kinds of oscillations of the conductances, which should be noted in the design of nanotube-based devices.Comment: 6 pages, 4 figure

    Robust Tensor Analysis with Non-Greedy L1-Norm Maximization

    Get PDF
    The L1-norm based tensor analysis (TPCA-L1) is recently proposed for dimensionality reduction and feature extraction. However, a greedy strategy was utilized for solving the L1-norm maximization problem, which makes it prone to being stuck in local solutions. In this paper, we propose a robust TPCA with non-greedy L1-norm maximization (TPCA-L1 non-greedy), in which all projection directions are optimized simultaneously. Experiments on several face databases demonstrate the effectiveness of the proposed method

    Cantilevers-on-membrane design for broadband MEMS piezoelectric vibration energy harvesting

    Get PDF
    Most MEMS piezoelectric vibration energy harvesters involve either cantilever-based topologies, doubly-clamped beams or membrane structures. While these traditional designs offer simplicity, their frequency response for broadband excitation are typically inadequate. This paper presents a new integrated cantilever-on-membrane design that attempts to both optimise the strain distribution on a piezoelectric membrane resonator and improve the power responsiveness of the harvester for broadband excitation. While a classic membrane-based resonator has the potential to theoretically offer wider operational frequency bandwidth than its cantilever counterpart, the addition of a centred proof mass neutralises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and integrates the merits of both the membrane and the cantilever designs. When experimentally subjected to a band-limited white noise excitation, up to approximately two folds of power enhancement was observed for the new membrane harvester compared to a classic plain membrane device

    An Umbrella-Shaped Topology for Broadband MEMS Piezoelectric Vibration Energy Harvesting

    Get PDF
    While cantilever topologies offer high power responsiveness for MEMS vibration energy harvesting (VEH), they are less robust than multiply clamped or membrane topologies. This paper attempts to address this topological optimisation dilemma by attempting to achieve both high power density and robustness. The proposed umbrella-shaped topology constituents of a single central anchor while the membrane area extends outwards and is further enclosed by a ring of proof mass. Implemented on a 0.5 μm AlN on 10 μm doped Si process, a fabricated device (121 mm2 die area) recorded a peak power of 173 μW (1798 Hz and 0.56 g). The normalised power density compares favourably against the state-of-the-art cantilever piezoelectric MEMS VEH, while not sacrificing robustness. Furthermore, this device offers a broadband response, and it has experimentally demonstrated over 3 times higher band-limited noise induced power density than a cantilevered harvester fabricated using the same process

    Quantum size effects on the perpendicular upper critical field in ultra-thin lead films

    Full text link
    We report the thickness-dependent (in terms of atomic layers) oscillation behavior of the perpendicular upper critical field Hc2H_{c2\perp} in the ultra-thin lead films at the reduced temperature (t=T/Tct=T/T_c). Distinct oscillations of the normal-state resistivity as a function of film thickness have also been observed. Compared with the TcT_c oscillation, the Hc2H_{c2\perp} shows a considerable large oscillation amplitude and a π\pi phase shift. The oscillatory mean free path caused by quantum size effect plays a role in Hc2H_{c2\perp} oscillation.Comment: 4 pages, 4 figure

    Local spin fluctuations in iron-based superconductors: 77Se and 87Rb NMR measurements of Tl0.47Rb0.34Fe1.63Se2

    Full text link
    We report nuclear magnetic resonance (NMR) studies of the intercalated iron selenide superconductor (Tl, Rb)y_{y}Fe2x_{2-x}Se2_2 (Tc=32T_c = 32 K). Single-crystal measurements up to 480 K on both 77^{77}Se and 87^{87}Rb nuclei show a superconducting phase with no magnetic order. The Knight shifts KK and relaxation rates 1/T1T1/T_1T increase very strongly with temperature above TcT_c, before flattening at 400 K. The quadratic TT-dependence and perfect proportionality of both KK and 1/T1T1/T_1T data demonstrate their origin in paramagnetic moments. A minimal model for this pseudogap-like response is not a missing density of states but two additive contributions from the itinerant electronic and local magnetic components, a framework unifying the KK and 1/T1T1/T_1 T data in many iron-based superconductors
    corecore