238 research outputs found

    Differential negative reinforcement of other behavior to increase compliance with wearing an anti-strip suit

    Full text link
    Using a changing-criterion design, we replicated and extended a study (Cook, Rapp, & Schulze, 2015) on differential negative reinforcement of other behavior (DNRO). More specifically, educational assistants implemented DNRO to teach a 12-year-old boy with autism spectrum disorder to comply with wearing an anti-strip suit to prevent inappropriate fecal behavior in a school setting. The duration for which the participant wore the suit systematically increased from 2 s at the start of treatment to the entire duration of the school day at the termination of the study. Moreover, these effects were generalized to a new school with novel staff and persisted for more than a year. These findings replicate prior research on DNRO and further support the use of the intervention to increase compliance with wearing protective items, or medical devices, in practical settings

    A New AR Interaction Paradigm for Collaborative TeleAssistance system: The P.O.A

    Get PDF
    International audienceIn this paper, we propose a prototype of a collaborative teleassistance system for mechanical repairs based on Augmented Reality (AR). This technology is generally used to implement specific assistance applications for users, which consist of providing all the information, known as augmentations, required to perform a task. For teletransmission applications, operators are equipped with a wearable computer and a technical support expert can accurately visualize what the operator sees thanks to the teletransmission of the corresponding video stream. Within the framework of remote communication, our aim is to foster collaboration, especially informal collaboration, between the operator and the expert in order to make teleassistance easier and more efficient. To do this we rely on classical repair technologies and on collaborative systems to introduce a new human-machine interaction: the Picking Outlining Adding interaction (POA interaction). With this new interaction paradigm, technical information is provided by directly Picking, Outlining and Adding information to an item in an operator's video stream

    Potential implantable nanofibrous biomaterials combined with stem cells for subchondral bone regeneration

    Get PDF
    The treatment of osteochondral defects remains a challenge. Four scaffolds were produced using Food and Drug Administration (FDA)-approved polymers to investigate their therapeutic potential for the regeneration of the osteochondral unit. Polycaprolactone (PCL) and poly(vinyl-pyrrolidone) (PVP) scaffolds were made by electrohydrodynamic techniques. Hydroxyapatite (HAp) and/or sodium hyaluronate (HA) can be then loaded to PCL nanofibers and/or PVP particles. The purpose of adding hydroxyapatite and sodium hyaluronate into PCL/PVP scaffolds is to increase the regenerative ability for subchondral bone and joint cartilage, respectively. Humanbone marrow-derived mesenchymal stem cells (hBM-MSCs) were seeded on these biomaterials. The biocompatibility of these biomaterials in vitro and in vivo, as well as their potential to support MSC differentiation under specific chondrogenic or osteogenic conditions, were evaluated. We show here that hBM-MSCs could proliferate and differentiate both in vitro and in vivo on these biomaterials. In addition, the PCL-HAp could effectively increase the mineralization and induce the differentiation of MSCs into osteoblasts in an osteogenic condition. These results indicate that PCL-HAp biomaterials combined with MSCs could be a beneficial candidate for subchondral bone regeneration

    Rendering and interactive virtual prototyping

    Get PDF
    Application of virtual reality techniques to architectural design allows to decrease the conception cost by virtual prototyping . In order to make the prototype usable for the decision process, an accurate lighting simulation must be done . The important need of interactivity in the manipulation of the prototype, for virtual walk-through or for modifying the prototype, implies a time efficient lighting simulation in the virtual world . Generaly, lighting simulation used in this type of application used empirical models whose only advantage is the real-time simulation . Texture mapping is a technique widely used to increase the quality of the simulation but without reaching the needed accuracy for architectural design . The radiosity model, based on the radiative transfers theory, allows to determine the lighting of a scene in a view-independent way. This model's limitation is its complexity. Also, its use in a virtual prototyping application needs the definition of adapted evaluation method . In this paper we propose a software environment, organised around two simulation kernels - Visualisation-interaction and Lighting simulation - that allows the use of the radiosity model during the design of an architectural environment. We present more precisely the design and the implementation of the lighting simulation module, called Eclairagiste, which objective is to ensure the maximum lighting accuracy at each instant . The Eclairagiste module, defined as an entity of the virtual reality programming environment VIPER, uses a multi-resolution representation of the radiosity function and relie on resolution method derived from hierarchical radiosity.L'application des techniques de réalité virtuelle à l'architecture permet de diminuer les coûts de conception du projet par prototypage virtuel. Afin de rendre le prototype développé exploitable pour la prise de décision, une simulation convenable de l'éclairage doit être effectuée. Le besoin important d'interactivité dans la manipulation du prototype, soit pour des déplacements de l'utilisateur dans le monde virtuel, soit pour des modifications géométriques apportées à ce monde, nécessite un éclairage très rapide de la scène. Actuellement, les modèles d'éclairage utilisés, dans ce type d'application, sont des approximations empiriques des modèles physiques dont le seul avantage est la rapidité d'évaluation. Les textures sont largement utilisées pour augmenter le réalisme des scènes virtuelles mais le niveau de simulation de l'éclairage reste grossier. Le modèle de radiosité, modèle physique fondé sur l'évaluation des transferts radiatifs dans une scène, permet de déterminer, de façon indépendante du point de vue, la valeur du signal lumineux en tout point de la scène, en tenant compte de toute la scène (illumination globale). Le principal inconvénient de ce modèle étant le temps de calcul nécessaire à sa résolution, son utilisation dans une application de prototypage passe par la définition de techniques de résolution adaptées. Nous proposons dans cet article une plate-forme logicielle, organisée autour de deux noyaux de simulation - Visualisation-Interaction et Simulation de l'éclairage -, permettant d'utiliser le modèle de radiosité lors de la conception par prototypage virtuel d'environnements architecturaux. Nous présentons plus particulièrement la conception et l'implantation d'un module de simulation de l'éclairage, appelé éclairagiste, dont l'objectif est d'assurer le réalisme maximum à chaque instant. Le module éclairagiste, définit comme une entité de l'environnement de programmation d'applications de réalité virtuelle VIPER, utilise une modélisation multi-échelle de la radiosité et repose sur une méthode de résolution dérivée de la radiosité hiérarchique

    Mechanistic illustration: How newly‐formed blood vessels stopped by the mineral blocks of bone substitutes can be avoided by using innovative combined therapeutics

    Get PDF
    One major limitation for the vascularization of bone substitutes used for filling is the presence of mineral blocks. The newly-formed blood vessels are stopped or have to circumvent the mineral blocks, resulting in inefficient delivery of oxygen and nutrients to the implant. This leads to necrosis within the implant and to poor engraftment of the bone substitute. The aim of the present study is to provide a bone substitute currently used in the clinic with suitably guided vascularization properties. This therapeutic hybrid bone filling, containing a mineral and a polymeric component, is fortified with pro-angiogenic smart nano-therapeutics that allow the release of angiogenic molecules. Our data showed that the improved vasculature within the implant promoted new bone formation and that the newly-formed bone swapped the mineral blocks of the bone substitutes much more efficiently than in non-functionalized bone substitutes. Therefore, we demonstrated that our therapeutic bone substitute is an advanced therapeutical medicinal product, with great potential to recuperate and guide vascularization that is stopped by mineral blocks, and can improve the regeneration of critical-sized bone defects. We have also elucidated the mechanism to understand how the newly-formed vessels can no longer encounter mineral blocks and pursue their course of vasculature, giving our advanced therapeutical bone filling great potential to be used in many applications, by combining filling and nano-regenerative medicine that currently fall short because of problems related to the lack of oxygen and nutrients

    Bilingual Learning for Second and Third Generation Children

    Get PDF
    Throughout the English-speaking world, children from bilingual backgrounds are being educated in mainstream classrooms where they have little or no opportunity to use their mother tongue. Second and third generation children, in particular, are assumed to be learning sufficiently through English only. This study investigated how British Bangladeshi children, learning Bengali in after-school classes but mostly more fluent in English than in their mother tongue, responded when able to use their full language repertoire within the mainstream curriculum. Through action research with mainstream and community language class teachers, bilingual literacy and numeracy tasks were devised and carried out with pupils aged seven to eleven in two East London primary schools. The bilingual activities were videorecorded and analysed qualitatively to identify the strategies used. The following cognitive and cultural benefits of bilingual learning discovered by researchers in other contexts were also found to apply in this particular setting: conceptual transfer, enriched understanding through translation, metalinguistic awareness, bicultural knowledge and building bilingual learner identities. The findings suggest that second and third generation children should be enabled to learn bilingually, and appropriate strategies are put forward for use in the mainstream classroom

    Gardening with grandparents: an early engagement with the science curriculum

    Get PDF
    In many cultures, elders are revered within the extended family as a source of wisdom gained from long experience. In Western societies, this role has been marginalised by changes in family structure, and grandparents' significant contribution to children's upbringing often goes unacknowledged. A research study with families of three- to six-year-olds in East London reveals how grandparents from a variety of cultural backgrounds passed on knowledge about growing fruit and vegetables to their grandchildren through joint gardening activities. Children learned to identify different plants, and to understand conditions and stages of plant growth. Grandparents from Bangladesh introduced children to a wide range of fruits and vegetables, and concepts were reinforced through bilingual communication. Analysis shows that these intergenerational learning encounters fostered children's scientific knowledge in ways that supported and extended curriculum work in the early years

    Tutorial : applying machine learning in behavioral research

    Full text link
    Machine-learning algorithms hold promise for revolutionizing how educators and clinicians make decisions. However, researchers in behavior analysis have been slow to adopt this methodology to further develop their understanding of human behavior and improve the application of the science to problems of applied significance. One potential explanation for the scarcity of research is that machine learning is not typically taught as part of training programs in behavior analysis. This tutorial aims to address this barrier by promoting increased research using machine learning in behavior analysis. We present how to apply the random forest, support vector machine, stochastic gradient descent, and k-nearest neighbors algorithms on a small dataset to better identify parents of children with autism who would benefit from a behavior analytic interactive web training. These step-by-step applications should allow researchers to implement machine-learning algorithms with novel research questions and datasets
    corecore