1,524 research outputs found

    A Near-Infrared Spectroscopic Study of the Accreting Magnetic White Dwarf SDSS J121209.31+013627.7 and its Substellar Companion

    Get PDF
    The nature of the excess near-infrared emission associated with the magnetic white dwarf commonly known as SDSS 1212 is investigated primarily through spectroscopy, and also via photometry. The inferred low mass secondary in this system has been previously detected by the emission and variation of Hα\alpha, and the 12.51-2.5 μ\mum spectral data presented here are consistent with the presence of a late L or early T dwarf. The excess flux seen beyond 1.5 μ\mum in the phase-averaged spectrum is adequately modeled with an L8 dwarf substellar companion and cyclotron emission in a 7 MG magnetic field. This interesting system manifests several observational properties typical of polars, and is most likely an old interacting binary with a magnetic white dwarf and a substellar donor in an extended low state.Comment: 28 pages, 5 figures, Accepted to Ap

    Self-consistent models of cuspy triaxial galaxies with dark matter haloes

    Get PDF
    We have constructed realistic, self-consistent models of triaxial elliptical galaxies embedded in triaxial dark matter haloes. We examined three different models for the shape of the dark matter halo: (i) the same axis ratios as the luminous matter (0.7:0.86:1); (ii) a more prolate shape (0.5:0.66:1); (iii) a more oblate shape (0.7:0.93:1). The models were obtained by means of the standard orbital superposition technique introduced by Schwarzschild. Self-consistent solutions were found in each of the three cases. Chaotic orbits were found to be important in all of the models,and their presence was shown to imply a possible slow evolution of the shapes of the haloes. Our results demonstrate for the first time that triaxial dark matter haloes can co-exist with triaxial galaxies.Comment: Latex paper based on the AASTEX format, 20 pages, 11 figures, 2 tables. Paper submitted to Ap

    On the Gravitational Collapse of a Gas Cloud in Presence of Bulk Viscosity

    Full text link
    We analyze the effects induced by the bulk viscosity on the dynamics associated to the extreme gravitational collapse. Aim of the work is to investigate whether the presence of viscous corrections to the evolution of a collapsing gas cloud influence the fragmentation process. To this end we study the dynamics of a uniform and spherically symmetric cloud with corrections due to the negative pressure contribution associated to the bulk viscosity phenomenology. Within the framework of a Newtonian approach (whose range of validity is outlined), we extend to the viscous case either the Lagrangian, either the Eulerian motion of the system and we treat the asymptotic evolution in correspondence to a viscosity coefficient of the form ζ=ζ0ρnu\zeta=\zeta_0 \rho^{nu} (ρ\rho being the cloud density and ζ0=const.\zeta_0=const.). We show how, in the adiabatic-like behavior of the gas (i.e. when the politropic index takes values 4/3<γ5/34/3<\gamma\leq5/3), density contrasts acquire, asymptotically, a vanishing behavior which prevents the formation of sub-structures. We can conclude that in the adiabatic-like collapse the top down mechanism of structures formation is suppressed as soon as enough strong viscous effects are taken into account. Such a feature is not present in the isothermal-like (i.e. 1γ<4/31\leq\gamma<4/3) collapse because the sub-structures formation is yet present and outlines the same behavior as in the non-viscous case. We emphasize that in the adiabatic-like collapse the bulk viscosity is also responsible for the appearance of a threshold scale beyond which perturbations begin to increase.Comment: 13 pages, no figur

    The evolution and energetics of large amplitude nonlinear internal waves on the Portuguese shelf

    Get PDF
    Intensive in-situ observations of nonlinear internal waves on the Portuguese shelf were made in August 1994, including measurements of the same wavepacket at three locations as it propagated on-shelf. The waves were characterized by sudden isotherm depressions of up to 45 m lasting 10-35 minutes, accompanied by current surges of up to 0.45 m s-1 and shears of up to 0.7 m s-1 over 60 m. The waves propagated away from the shelf break with an estimated phase speed of 0.57 m s-1. The amplitude of the waves was comparable to the theoretical maximum. The kinetic and potential energies of the waves were calculated directly from the observed current and density structures. Individual waves were associated with a total energy of up to approximately 3.0 M J m-1 per unit crest length. The depth integrated on-shelf internal wave energy flux approached 2000 W m-1 per unit crest length near the shelf break and decreased on-shore at a depth integrated rate of approximately 7.7 × 10-2 W m-2. The internal waves provided an important source of vertical mixing where they occurred on the Portuguese shelf throughout most of August 1994, represented by a sustained vertical eddy diffusivity profile which peaked at Kz ≈ 2.2 × 10-3 m2 s-1 at 30 m depth. Internal mixing would have to be parameterized by such a Kz profile in any model of the Portuguese shelf in which the stratification were to be accurately represented

    The "Mysterious" Origin of Brown Dwarfs

    Full text link
    Hundreds of brown dwarfs (BDs) have been discovered in the last few years in stellar clusters and among field stars. BDs are almost as numerous as hydrogen burning stars and so a theory of star formation should also explain their origin. The ``mystery'' of the origin of BDs is that their mass is two orders of magnitude smaller than the average Jeans' mass in star--forming clouds, and yet they are so common. In this work we investigate the possibility that gravitationally unstable protostellar cores of BD mass are formed directly by the process of turbulent fragmentation. Supersonic turbulence in molecular clouds generates a complex density field with a very large density contrast. As a result, a fraction of BD mass cores formed by the turbulent flow are dense enough to be gravitationally unstable. We find that with density, temperature and rms Mach number typical of cluster--forming regions, turbulent fragmentation can account for the observed BD abundance.Comment: 11 pages, 3 figures, ApJ submitted Error in equation 1 has been corrected. Improved figure

    The generation of nonlinear internal waves

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, No. 2 (2012): 108–123, doi:10.5670/oceanog.2012.46.Nonlinear internal waves are found in many parts of the world ocean. Their widespread distribution is a result of their origin in the barotropic tide and in the variety of ways they can be generated, including by lee waves, tidal beams, resonance, plumes, and the transformation of the internal tide. The differing generation mechanisms and diversity of generation locations and conditions all combine to produce waves that range in scale from a few tens of meters to kilometers, but with all properly described by solitary wave theory. The ability of oceanic nonlinear internal waves to persist for days after generation and the key role internal waves play in connecting large-scale tides to smaller-scale turbulence make them important for understanding the ocean environment.Christopher Jackson gratefully acknowledges the support of the Office of Naval Research through contract N0001409C0224

    Slow relaxation to equipartition in spring-chain systems

    Get PDF
    In this study, one-dimensional systems of masses connected by springs, i.e., spring-chain systems, are investigated numerically. The average kinetic energy of chain-end particles of these systems is larger than that of other particles, which is similar to the behavior observed for systems made of masses connected by rigid links. The energetic motion of the end particles is, however, transient, and the system relaxes to thermal equilibrium after a while, where the average kinetic energy of each particle is the same, that is, equipartition of energy is achieved. This is in contrast to the case of systems made of masses connected by rigid links, where the energetic motion of the end particles is observed in equilibrium. The timescale of relaxation estimated by simulation increases rapidly with increasing spring constant. The timescale is also estimated using the Boltzmann-Jeans theory and is found to be in quite good agreement with that obtained by the simulation

    Electronic doping of graphene by deposited transition metal atoms

    Full text link
    We perform a phenomenological analysis of the problem of the electronic doping of a graphene sheet by deposited transition metal atoms, which aggregate in clusters. The sample is placed in a capacitor device such that the electronic doping of graphene can be varied by the application of a gate voltage and such that transport measurements can be performed via the application of a (much smaller) voltage along the graphene sample, as reported in the work of Pi et al. [Phys. Rev. B 80, 075406 (2009)]. The analysis allows us to explain the thermodynamic properties of the device, such as the level of doping of graphene and the ionisation potential of the metal clusters in terms of the chemical interaction between graphene and the clusters. We are also able, by modelling the metallic clusters as perfect conducting spheres, to determine the scattering potential due to these clusters on the electronic carriers of graphene and hence the contribution of these clusters to the resistivity of the sample. The model presented is able to explain the measurements performed by Pi et al. on Pt-covered graphene samples at the lowest metallic coverages measured and we also present a theoretical argument based on the above model that explains why significant deviations from such a theory are observed at higher levels of coverage.Comment: 16 pages, 10 figure
    corecore