11,423 research outputs found
Conserving Approximations in Time-Dependent Density Functional Theory
In the present work we propose a theory for obtaining successively better
approximations to the linear response functions of time-dependent density or
current-density functional theory. The new technique is based on the
variational approach to many-body perturbation theory (MBPT) as developed
during the sixties and later expanded by us in the mid nineties. Due to this
feature the resulting response functions obey a large number of conservation
laws such as particle and momentum conservation and sum rules. The quality of
the obtained results is governed by the physical processes built in through
MBPT but also by the choice of variational expressions. We here present several
conserving response functions of different sophistication to be used in the
calculation of the optical response of solids and nano-scale systems.Comment: 11 pages, 4 figures, revised versio
Strongly coupled modes in a weakly driven micromechanical resonator
We demonstrate strong coupling between the flexural vibration modes of a
clamped-clamped micromechanical resonator vibrating at low amplitudes. This
coupling enables the direct measurement of the frequency response via
amplitude- and phase modulation schemes using the fundamental mode as a
mechanical detector. In the linear regime, a frequency shift of
is observed for a mode with a line width of
in vacuum. The measured response is well-described by the
analytical model based on the Euler-Bernoulli beam including tension.
Calculations predict an upper limit for the room-temperature Q-factor of
for our top-down fabricated micromechanical beam
resonators.Comment: 9 pages, 2 figure
On the Executability of Interactive Computation
The model of interactive Turing machines (ITMs) has been proposed to
characterise which stream translations are interactively computable; the model
of reactive Turing machines (RTMs) has been proposed to characterise which
behaviours are reactively executable. In this article we provide a comparison
of the two models. We show, on the one hand, that the behaviour exhibited by
ITMs is reactively executable, and, on the other hand, that the stream
translations naturally associated with RTMs are interactively computable. We
conclude from these results that the theory of reactive executability subsumes
the theory of interactive computability. Inspired by the existing model of ITMs
with advice, which provides a model of evolving computation, we also consider
RTMs with advice and we establish that a facility of advice considerably
upgrades the behavioural expressiveness of RTMs: every countable transition
system can be simulated by some RTM with advice up to a fine notion of
behavioural equivalence.Comment: 15 pages, 0 figure
Compact two-electron wave function for bond dissociation and Van der Waals interactions: A natural amplitude assessment
Electron correlations in molecules can be divided in short range dynamical
correlations, long range Van der Waals type interactions and near degeneracy
static correlations. In this work we analyze for a one-dimensional model of a
two-electron system how these three types of correlations can be incorporated
in a simple wave function of restricted functional form consisting of an
orbital product multiplied by a single correlation function
depending on the interelectronic distance . Since the three types of
correlations mentioned lead to different signatures in terms of the natural
orbital (NO) amplitudes in two-electron systems we make an analysis of the wave
function in terms of the NO amplitudes for a model system of a diatomic
molecule. In our numerical implementation we fully optimize the orbitals and
the correlation function on a spatial grid without restrictions on their
functional form. Due to this particular form of the wave function, we can prove
that none of the amplitudes vanishes and moreover that it displays a distinct
sign pattern and a series of avoided crossings as a function of the bond
distance in agreement with the exact solution. This shows that the wave
function Ansatz correctly incorporates the long range Van der Waals
interactions. We further show that the approximate wave function gives an
excellent binding curve and is able to describe static correlations. We show
that in order to do this the correlation function needs to diverge
for large at large internuclear distances while for shorter bond
distances it increases as a function of to a maximum value after which
it decays exponentially. We further give a physical interpretation of this
behavior.Comment: 16 pages, 13 figure
National scientific capabilities and technological performance: An exploration of emerging industrial relevant research domains.
Today's theories and models on innovation stress the importance of scientific capabilities and science-technology proximity, especially in new emerging fields of economic activity. In this contribution we examine the relationship between national scientific capabilities, the science intensity of technology and technological performance within six promising industrial fields. Our findings reveal that national technological performance is positively associated with scientific capabilities. Countries performing better on a technological level are characterized both by larger numbers of publications and by numbers of involved institutions that exceed average expected values. The latter observation holds for both companies and knowledge generating institutes actively involved in scientific activities. As such, our findings seem to suggest beneficial effects of scientific capabilities shouldered by a multitude of organizations. In addition, higher numbers of patent activity coincide with higher levels of science intensity pointing out the relevance of science 'proximity' when developing technology in newer, emerging fields. Limitations and directions for further research are discussed.Performance; Research; Theory; Models; Model; Innovation; Field; Science; Intensity; Technology; Country; Expected; Value; Companies; Knowledge; Effects;
Combining Hebbian and reinforcement learning in a minibrain model
A toy model of a neural network in which both Hebbian learning and
reinforcement learning occur is studied. The problem of `path interference',
which makes that the neural net quickly forgets previously learned input-output
relations is tackled by adding a Hebbian term (proportional to the learning
rate ) to the reinforcement term (proportional to ) in the learning
rule. It is shown that the number of learning steps is reduced considerably if
, i.e., if the Hebbian term is neither too small nor too
large compared to the reinforcement term
A charged particle in a magnetic field - Jarzynski Equality
We describe some solvable models which illustrate the Jarzynski theorem and
related fluctuation theorems. We consider a charged particle in the presence of
magnetic field in a two dimensional harmonic well. In the first case the centre
of the harmonic potential is translated with a uniform velocity, while in the
other case the particle is subjected to an ac force. We show that Jarzynski
identity complements Bohr-van Leeuwen theorem on the absence of diamagnetism in
equilibrium classical system.Comment: 5 pages, minor corrections made and journal reference adde
Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena Xray observatory
Athena is a space-based X-ray observatory intended for exploration of the hot
and energetic universe. One of the science instruments on Athena will be the
X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer,
based on a large cryogenic imaging array of Transition Edge Sensors (TES) based
microcalorimeters operating at a temperature of 100mK. The imaging array
consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a
field of view with a diameter of of 5 arc minutes. Multiplexed readout of the
cryogenic microcalorimeter array is essential to comply with the cooling power
and complexity constraints on a space craft. Frequency domain multiplexing has
been under development for the readout of TES-based detectors for this purpose,
not only for the X-IFU detector arrays but also for TES-based bolometer arrays
for the Safari instrument of the Japanese SPICA observatory. This paper
discusses the design considerations which are applicable to optimise the
multiplex factor within the boundary conditions as set by the space craft. More
specifically, the interplay between the science requirements such as pixel
dynamic range, pixel speed, and cross talk, and the space craft requirements
such as the power dissipation budget, available bandwidth, and electromagnetic
compatibility will be discussed
Total energies from variational functionals of the Green function and the renormalized four-point vertex
We derive variational expressions for the grand potential or action in terms
of the many-body Green function which describes the propagation of
particles and the renormalized four-point vertex which describes the
scattering of two particles in many-body systems. The main ingredient of the
variational functionals is a term we denote as the -functional which plays
a role analogously to the usual -functional studied by Baym (G.Baym,
Phys.Rev. 127, 1391 (1962)) in connection with the conservation laws in
many-body systems. We show that any -derivable theory is also
-derivable and therefore respects the conservation laws. We further set
up a computational scheme to obtain accurate total energies from our
variational functionals without having to solve computationally expensive sets
of self-consistent equations. The input of the functional is an approximate
Green function and an approximate four-point vertex
obtained at a relatively low computational cost. The
variational property of the functional guarantees that the error in the total
energy is only of second order in deviations of the input Green function and
vertex from the self-consistent ones that make the functional stationary. The
functionals that we will consider for practical applications correspond to
infinite order summations of ladder and exchange diagrams and are therefore
particularly suited for applications to highly correlated systems. Their
practical evaluation is discussed in detail.Comment: 21 pages, 10 figures. Physical Review B (accepted
Особливості формування етнічного складу селянської верстви Степового Побужжя
In this short paper we sketch a brief introduction to our Krimp algorithm. Moreover, we briefly discuss some of the large body of follow up research. Pointers to the relevant papers are provided in the bibliography
- …
