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Abstract 
 
Today’s theories and models on innovation stress the importance of scientific 
capabilities and science-technology proximity, especially in new emerging fields of 
economic activity. In this contribution we examine the relationship between national 
scientific capabilities, the science intensity of technology and technological performance 
within six promising industrial fields.  Our findings reveal that national technological 
performance is positively associated with scientific capabilities. Countries performing 
better on a technological level are characterized both by larger numbers of publications 
and by numbers of involved institutions that exceed average expected values. The latter 
observation holds for both companies and knowledge generating institutes actively 
involved in scientific activities. As such, our findings seem to suggest beneficial effects of 
scientific capabilities shouldered by a multitude of organizations. In addition, higher 
numbers of patent activity coincide with higher levels of science intensity pointing out 
the relevance of science ‘proximity’ when developing technology in newer, emerging 
fields. Limitations and directions for further research are discussed.  
 
. 
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1. Introduction  

 
Innovation is one of the major drivers behind economical development and as a 

consequence a primary concern for practitioners, policy makers and researchers alike. In 
today’s theories and models on innovation, the contribution of knowledge is cast in a central 
role, implying an increased interest in the part that knowledge generating institutes (KGIs) – 
such as universities and public research centres – can play within today’s innovation systems. 
Combining this with the obvious role of business actors and the important function of 
governments in stimulating and regulating innovation, a multiple-actor perspective emerges in 
which interactions figures prominently. Innovation scholars have captured this multitude of 
actors and interactions in a strand of theories and models that increasingly move away from 
linear assumptions. Network dynamics, interactions and circularity have become core 
elements in today’s innovation studies, as can be witnessed in the work on scientific networks 
(Pavitt, 1997; Steinmuller, 1994; David et al., 1997); the vision on industry, academia and 
government interactions, as encompassed by the ‘Triple Helix’ model (Leydesdorff & 
Etzkowitz, 1996; Etzkowitz & Leydesdorff, 1998) and the concept of national or regional 
‘innovation system’ (Nelson 1993; OECD 1999). Theories and models on regional clustering 
and innovation networks further illustrate how cooperation and interaction are recognized as 
important ingredients for the development of the innovative potential of regions or nations 
(Porter, 1995; Varga, 1998). The importance of the regional presence of knowledge 
generating, scientific institutes is a central theme in this work. 

 
Several authors have empirically confirmed the role of scientific centres for regional 

development. Anselin et al. (1997) provided evidence of local spillovers at the US state and 
MSA (Metropolitan Statistical Area) level. Blind and Grupp (1999) examined eighteen 
technology zones in Baden-Würtemberg and Nordrhein-Westfalen, and established a clear 
link between the presence of public institutions of higher learning and the technology-output 
in a particular geographical area. More recently, Fischer and Varga (2003) provided evidence 
on the importance of geographically mediated knowledge spillovers from university research 
activities to regional knowledge production in high-technology industries in Austria. They 
showed geographically mediated university spillovers to transcend the spatial scale of 
political districts and demonstrated a clear distance decay pattern for such spillovers. Niosi 
and Bas (2001) analyzing Canadian biotech clusters, found universities – along with 
government laboratories and a few large firms – to attract entry of new firms. Monjon and 
Waelbroeck (2003) found that spillovers from universities to innovative firms can provide 
benefits to those firms. They found a differential effect according to the type of innovation 
that is pursued: incremental innovations benefit most from knowledge spillovers. Highly 
innovative firms, working at the frontier of academic knowledge, were found to benefit more 
from collaborative research with foreign universities.  

 
These theoretical and conceptual evolutions, along with the empirical support, 

highlight the relevance of a set of indicators to allow studying and analyzing the relationship 
between the presence of scientific actors and capabilities on the one hand and technological 
performance on the other hand. Bibliometric indicators have, since a few decades, been 
widely adopted for benchmarking and assessing science and technology (see for instance the 
European Reports on Science and Technology Indicators and the US NSF Reports on Science 
and Engineering Indicators). Publication related indicators have served mostly in mapping 
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scientific efforts, while patent related indicators are applied for assessing technological 
activity. Increasingly, quantitative indicators are designed to depict relatedness and 
interdependencies between the science and technology sphere, thereby grasping more 
completely the concept of what has nowadays become referred to as ‘innovation system’ 
(Schmoch, 1997; Tijssen, 2001). Such indicators include public-private coauthored 
publications and co-owned patents; as well as citations between both activity spheres, mostly 
scientific references in patents (Narin et al. 1997; Verbeek et al., 2002; Tijssen et al. 2000).  

 
At the same time, empirical studies including indicators pertaining to scientific 

capabilities, technological performance and their relatedness on the level of national 
innovation systems seem scarce. Van Looy et al., (2003) investigated the impact of science-
technology relatedness on the effectiveness of technology development on a country level. In 
science intensive fields, they found a positive relation between the science intensity of patents 
(measured by the amount of non-patent references) and technological productivity. Their 
findings suggest the relevance of fostering relations between knowledge generating actors and 
technology producers, especially in science intensive fields. It can be observed that in this 
analysis, indicators pertaining to the scientific capabilities of a country have not been taken 
into account. As such, the observed positive relationships might stem from the presence of 
scientific capabilities; in this case one would merely be counting ‘spill over’ effects that could 
be assessed equally by established bibliometric indicators pertaining to scientific publications. 
Hence, further analysis - whereby indicators pertaining to scientific capabilities are taken into 
account – is required for assessing the relevancy of using non patent references as an 
(additional) indicator to explain differences in technological performance. It is in this area that 
we want to situate our contribution. The associations between the presence of scientific 
capabilities and technological productivity will be explored through the following questions:  

 
• To what extent are scientific capabilities positively related to the technological 

performance of nations? 
• Is science-technology relatedness – as measured by the amount of non-patent 

references – still positively associated with technological performance when scientific 
capabilities are brought into the equation?  
 
In our analysis, we focus on emerging and knowledge-intensive fields, as the potential 

role of scientific capabilities for the development of technological activities seems to be most 
outspoken within such domains (cf. supra). The data pertain to the following emerging ‘hot 
topics’, i.e. new emerging domains with considerable levels of industrial relevance: 

 
• Fuel Cells  
• Stem Cells 
• Conductive Polymers 
• Nano-electronics 
• Femto-second lasers 
• Tissue Engineering/Alzheimer’s Disease 

 
All indicators and concepts are aggregated on a country level, providing a picture of 

scientific and technological activity that coincides with the level of ‘national’ innovation 
systems. The results obtained should hence be interpreted on this level of analysis. In the next 
section, we will discus the concepts and indicators used in more depth. Equipped with this 
background, data sources and obtained results will be presented. We conclude this paper by 
discussing the results and their implications.  
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2. Constructs & Indicators  

 
Scientific Capabilities  

 
The total amount of publications in a specific domain for a given country is used as an 

indicator of scientific performance. Relevant publications were retrieved from the Thomson 
Scientific’s Science Citation Index®1 based on validated search keys for each of the domains 
included. In a next step, all retrieved publications were allocated to countries based on the 
‘nationality’ of the organizational affiliation of the authors. In the case of internationally co-
authored papers, full counts were applied to acknowledge all countries involved. In addition, 
the number of research institutes and the number of companies associated with these 
publications were included as explanatory variables. The publications to which a company is 
associated are mostly company-university co-authored papers. As such, company-
involvement in publications could also be considered as signaling science-technology 
interactions (e.g. Tijssen, 2004). 

 
Science-Technology Relatedness 

 
An additional indicator of science-technology relatedness that we introduced in the 

analysis pertains to the amount of non-patent references found in patents. These non patent or 
‘other’ references are included on the front page of patents, and signal the presence of 
relevant (non patent) prior art that qualifies and contextualizes the novelty and inventiveness 
of the patent claims and their applicability. Hence, any interpretation of non-patent references 
should take into account the specific context of use, i.e. the patent application and granting 
process (Michel & Bettels, 2001; Harhoff et al, 2003; Meyer et al., 2003; Van Looy et al., 
2003). An in depth analysis of the use of non-patent references in the invention and 
application process reveals that they should not be considered as signaling a direct influence 
or causation between the two documents, i.e. citing patent and cited article (Tijssen, 2002; 
Meyer, 2000a, 2000b). Rather, the presence of scientific research in the ‘prior art’ description 
of a patented invention can be understood as an indicator of the ‘distance’ between scientific 
findings on the one hand and technology development on the other hand. As references in 
patents are a reflection of prior art, more references towards science fields signal more 
relevant prior art derived from scientific sources. This does not equal a uni-directional, 
influencing or contributing, link from the cited paper towards the citing patent. However, it 
should be clear that if more scientific references are considered relevant for assessing and 
contextualizing the claims made within the patent, then the technology is situated closer to 
scientific activity (Van Looy et al. Forthcoming). So without postulating a direct link of 
causation or an immediate interaction, the average amount of non-patent references found in 
patents are considered here as indicative of a certain level of relatedness or ‘proximity’ 
between scientific and technological activities.  

 
For each domain, year and country, the total number of non-patent references (NPRs) 

was calculated for all the patents implied. In a next step, the average number of NPRs was 

                                                 
1 The data were extracted from the CWTS bibliometric database, which is based on the Thomson Scientific Citation Indices (CD ROM 
version) and operated by CWTS under a licence agreement with Thomson Scientific. 

 5



calculated by domain, year and country. Averages (per patent) were used instead of absolute 
numbers, because absolute number of non patent references almost completely coincides with 
total amount of patents (r=0,93, p<0,001).  

 
 

Technological Performance  
 
Technological performance is measured by the number of patents produced in a given 

country for each year in the time period 1997-2001. USPTO patents were used, as these 
contain significantly more NPRs than EPO patents. Both variables were logarithmically 
transformed in order to obtain a normal distribution2. Note that only those countries are 
analyzed where patenting activity is observed in the considered timeframe. Patent output is 
used as the dependent variable, and considered as an indication of the technological 
performance of a given country in a given year. As such, we will examine whether and to 
what extent differences in scientific activities as well as in S-T relatedness coincide with the 
differences in the amount of patent activity taking place.  

 
Finally, two control variables were included. First of all, the country size in terms of 

population size was taken into account. Second, the year in which patent activity took place 
(application date) was introduced. This is of special importance, because granted patents were 
used for the time period 1997 – 2001. Given the time period between applying and granting 
patents, the data extracted in 2003 show a decreasing trend – in terms of absolute numbers – 
from 2000 onwards. This becomes clear in table 1. Tables 2 and 3 provide an insight in the 
distribution of data by field and by country. 
 

Insert Table 1 – Distribution of observations by year  
 

Insert Table 2 - Distribution of observations by domain/hot topic 
 

Insert Table 3 - Distribution of observations by country 
 
 

3. Analysis: Descriptive statistics and correlations 

 
 Before looking at the specific analyses conducted to address the aforementioned 
questions, some descriptive statistics will be provided. Table 4 gives a summary overview of 
the different variables, broken down by domain. The reported figures relate to the observed 
values, averaged over the countries and years that are included in the analysis. As table 4 
makes clear, both patent and publication outputs vary by domain. With regard to patents, 
higher figures are observed for Femto-second Lasers, Nanoelectronics and also Fuel Cells. 
For publications, average figures are highest for Nano-electronics and especially for Stem 
Cells. A similar pattern can be noticed for the number of publishing knowledge generating 
institutes (KGIs). The number of companies actively involved in the production of scientific 
papers is considerably lower, but note a relatively high average number of publishing 
companies in the field of Stem Cells. The following countries are responsible for these higher 
                                                 
2 Such a transformation has also been applied to the scientific and S-T variables, for the same reason. 
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levels of both number of publications and number of publishing KGIs: USA, Japan, France, 
Germany and to a lesser extent the United Kingdom. Finally, the average amount of NPRs is 
highest in pharmaceutical/biotechnology related fields (Alzheimer/Tissue Engineering and 
Stem Cells).  
 

Insert Table 4 - Average of variables by domain (over year and country)  
 
 Table 5 reports on the correlations between the different variables that are included in 
the analysis. First, and this should come as no surprise, population significantly correlates 
with all other variables – except with the average amount of NPRs. This observation confirms 
the relevance of including population as a control variable. Second, high correlations are 
found between the indicators reflecting actors and output of scientific activity: total amount of 
publications, number of knowledge generating institutes associated with these publications 
and finally the number of companies associated with these publications. The multicollinearity 
between these variables inspired us to apply ANCOVA and regression models with residuals 
values for number of publishing KGIs and number of publishing companies. Finally, 
significant but moderate correlations are observed between the average amount of NPRs and 
the number of publishing KGIs.  
 

Insert Table 5 - Correlations between key variables (All fields) 

4. Addressing the research questions: does technological performance – on a national 
level – relate to scientific performance and/or science-technology relatedness?  

 
The central research questions pertain to the relationship between patenting 

performance on the one hand, and levels of scientific activity (number of publications) as well 
as science-technology relatedness on the other hand. Science-technology relatedness was 
measured by: the number of companies actively contributing to scientific activity 
(publications authored or co-authored by companies); the number of actively contributing 
knowledge generating institutes (universities or public research organizations) within a certain 
subfield as well as the (average) amount of non patent references. In addition, domain 
differences, country sizes and the impact of the time period considered (year) were taken into 
account when analyzing the relationship with technological activity. 
 

As stated earlier, a multicollinearity issue arises due to the extremely high correlations 
between three of the independent variables: the amount of publications, the amount of 
publishing companies and the amount of publishing KGIs (r = +/- 0,90). This implies that the 
robustness of the findings obtained for these variables can be questioned, because their effects 
are to a large extent interchangeable. In order to asses their distinctive effects; two 
intermediate regressions were performed with the number of publications acting as an 
independent variable. The number of publishing companies and the number of KGIs were 
treated respectively as dependent variables. In a next step, the residual values were calculated 
both for number of publishing companies and for number of publishing KGIs. In doing so, the 
influence of the total amount of publications – as reflected in the regression equation – is 
removed from the amount of contributing actors. As a consequence, the correlation between 
the number of publications and the (standardized) residual values for number of companies 
and number of KGIs equals zero.  
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In a next step, an Ancova analysis (Analysis of Co-Variance) was performed with 
patent activity as dependent variable and domain and year as fixed factors (categorical data). 
Covariates are: the amount of publications, the residual values obtained for the number of 
KGIs and Companies involved in these publications, the average number of NPRs and finally 
population figures. Analyses are performed on the logarithmically transformed variables. 
Table 6 summarizes the results obtained. 
 

Insert Table 6 - Results of ANCOVA 
 
As an inspection of Table 6 reveals, several variables significantly relate to patenting 

performance. A significant relation, which can be assumed to be positive, was found with 
population size. The appearance of significant domain effects can be considered in line with 
the average patent volumes as reported in Table 4. More interesting from the perspective of 
the research questions posed, are the results obtained for the scientific and ‘science-
technology relatedness’ indicators. Both the number of publications and the average amount 
of NPRs (used as an indicator of science-technology relatedness) are significantly related to 
technological performance. At the same time, it can be noted that the variables pertaining to 
the number of actors (KGIs and companies) still relate significantly to technological 
performance, despite the elimination of shared variance with the total amount of publications. 
Stated otherwise, the residual values of both the number of publishing companies and the 
number of publishing KGIs significantly contribute to the variance observed in terms of 
patent activity, independent from the total amount of publications. Finally, one notes a 
significant year effect. Considering table 1, this effect can be assumed to be negative. At the 
same time Domain*Year interaction effects are not present; implying that the same trend is 
equally manifest in all domains under study. The hypothesis that the observed year effects are 
due to the time lag inherent in the granting process of patents - resulting in a significant 
decline of patent activity after 2000 - is confirmed when performing a similar analysis for the 
time period 1997-1999 only. The significance of the relationships examined, mirrors the 
findings of Table 6 except for year, which is no longer significant.  

 
Finally, the regression analysis, complementing the ANCOVA results of Table 6, 

provides a systematic view on the signs of the observed relationships. Dummy variables were 
introduced for the different domains, with FemtoSecond Lasers acting as reference point. 
Table 7 indicates positive beta values for the key variables under study: scientific activity and 
average amount of NPRs. In addition, one observes positive values for both the number of 
companies and the number of KGIs involved in scientific activity. 

 
 Insert Table 7 - Regression Results  

 

5. Discussion and directions for further research 

As these analysis are of an exploratory nature, additional analysis and verification 
efforts are advisable (see below) to confirm the robustness of the results obtained. At the same 
time, the findings presented here are more than interesting and promising.  

 
Firstly, the overall explained variance is considerable: the variables introduced in the 

model explain over 50% of the variance observed in technological activity. 
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Secondly, some first intermediate conclusions can be derived, relating to the relevance 
of the indicators explored and developed. Both the indicators for scientific activity and for 
science-technology relatedness appear to significantly coincide with variation that is observed 
in terms of patent activity. Stated differently, countries performing better on a technological 
level – as measured by the amount of patenting activity – are characterized both by larger 
numbers of publications and by numbers of involved institutions that exceed average 
expected3 values. The latter observation holds for both companies and knowledge generating 
institutes actively involved in scientific activities. As such, our findings seem to suggest 
beneficial effects of scientific capabilities shouldered by a multitude of organizations. In 
addition, higher numbers of patent activity coincide with more NPRs, pointing out the 
relevance of science ‘proximity’ when developing technology in newer, emerging fields.  
 

The positive statistical relationship with scientific research activity that is carried out 
by companies may come as a surprise, considering the general trend in the business sector to 
reduce the engagement in more exploratory (‘basic’) scientific research. However, this change 
of orientation does not necessarily affect the R&D strategies of the technology companies that 
are leading technology developers in the high-tech science-based sectors, who still continue to 
conduct a minimum level of in-house research and who, more importantly, have increased 
their outsourcing of basic research to the public sector research organizations, public-private 
joint research ventures or technology development centres. Each of the hot topics dealt with in 
this analysis are exemplars of knowledge domains and fledging industrial sectors, where 
industry has to be active at the cutting edge of both basic and applied science in order to reap 
the ‘first mover’ benefits in competitive global markets (either in terms of acquiring patents, 
selling licenses, or launching innovative products and processes). 
 

It goes without saying that these findings need to be further corroborated by efforts 
geared towards confirming and further developing the insights obtained so far. Extending the 
analyses towards other sub-domains and hot topics seems relevant and may allow further 
documentation of technology life cycle dynamics and their impact on the relationships found. 
The authors are currently examining the possibilities to extend the findings by introducing 
longer time frames: relating scientific, technological activities and their interactions over time 
will allow assessing more precisely the (assumed reciprocal) influence of the different activity 
realms and their effects on performance as well as delineate more precisely the moderating 
impact of technological life cycle stages. 

  

                                                 
3 Expected values based on publication volume 
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Table 1 – Distribution of observations by year  
(number of countries*fields for which observations are available) 

  Frequency Percent Cumulative Percent 
1997 72 29,9 29,9 
1998 68 28,2 58,1 
1999 65 27,0 85,1 
2000 30 12,4 97,5 
2001 6 2,5 100,0 
Total 241 100,0  

 
Table 2 – Distribution of observations by domain/hot topic 

(Number of years*countries for which observations are available) 
  Frequency Percent Cumulative Percent 
Nano-electronics 61 25,3 25,3 
Femto-second Lasers 55 22,8 48,1 
Fuel Cells 38 15,8 63,9 
Alzheimer  36 14,9 78,8 
Conducting Polymers 31 12,9 91,7 
Stem Cells 20 8,3 100,0 
Total 241 100,0  
 

Table 3 – Distribution of observations by country 
(Number of domains*years for which observations are available) 

 Frequency Percent Cumulative Percent 
JAPAN 26 10,8 10,8 
USA 26 10,8 21,6 
GERMANY 21 8,7 30,3 
CANADA 17 7,1 37,3 
FRANCE 15 6,2 43,6 
SOUTH KOREA 15 6,2 49,8 
UK 15 6,2 56,0 
TAIWAN 13 5,4 61,4 
ITALY 12 5,0 66,4 
SWITZERLAND 12 5,0 71,4 
ISRAEL 9 3,7 75,1 
DENMARK 8 3,3 78,4 
NETHERLANDS 7 2,9 81,3 
AUSTRALIA 6 2,5 83,8 
FINLAND 5 2,1 85,9 
BELGIUM 4 1,7 87,6 
HONG KONG 3 1,2 88,8 
SINGAPORE 3 1,2 90,0 
SWEDEN 3 1,2 91,3 
ALL OTHER  21 8,7 100 
Total 241 100,0  
 

Table 4 - Average of variables by domain (over year and country)  
 Alzheimer Fuel 

Cells 
FS – 
Lasers 

Nano-
Electronics 

Conductive 
Polymers 

Stem 
Cells 

Patents 9,97 14,53 33,51 19,90 5,87 6,45 
Publications 54,33 19,45 18,98 98,28 23,10 530,70 
# of publishing KGIs 18,22 8,89 8,75 26,34 12,00 96,85 
# of publishing Companies  1,72 2,39 1,13 3,54 1,97 13,65 
Average amount of Non Patent 
References 

14,06 1,84 2,61 2,73 3,62 14,43 
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Table 5 - Correlations between key variables (All fields) 

1 ,116 ,199** ,191** ,250** -,006
, ,072 ,002 ,003 ,000 ,923

241 241 241 241 239 241
,116 1 ,933** ,877** ,229** ,163*
,072 , ,000 ,000 ,000 ,011
241 241 241 241 239 241
,199** ,933** 1 ,861** ,276** ,160*
,002 ,000 , ,000 ,000 ,013

241 241 241 241 239 241

,191** ,877** ,861** 1 ,262** ,102
,003 ,000 ,000 , ,000 ,116
241 241 241 241 239 241
,250** ,229** ,276** ,262** 1 ,080
,000 ,000 ,000 ,000 , ,218
239 239 239 239 239 239

-,006 ,163* ,160* ,102 ,080 1
,923 ,011 ,013 ,116 ,218 ,
241 241 241 241 239 241

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

Patents

Publications

Number of
Publishing KGI's

Number of
Publishing
Companies

Population

Average number of
NPR's

Patents Publications

Number of
Publishing

KGI's

Number of
Publishing
Companies Population

Average
Number of

NPR's

Correlation is significant at the 0.01 level (2-tailed).**. 

Correlation is significant at the 0.05 level (2-tailed).*. 

 
 

Table 6 - Results of ANCOVA 
Dependent Variable: Patent Activity; Domain and Year as Fixed Factors; All other variables: Covariates. 

Number of KGIs/Companies involved in scientific research activity: Residual values (corrected for total amount 
of publications)  

Time Period: 1997 – 2001 
Source Type III Sum of 

Squares 
df Mean 

Square 
F Sig. 

Corrected Model 45,260 32 1,414 10,183 ,000 
Intercept 2,095 1 2,095 15,084 ,000 
Publications 6,094 1 6,094 43,873 ,000 
Population 1,256 1 1,256 9,043 ,003 
Average Amount of Non Patent References 1,782 1 1,782 12,829 ,000 
Number of KGIs involved in scientific activity 
(Residual Value) 

1,393 1 1,393 10,026 ,002 

Number of Companies involved in scientific activity 
(Residual Value)  

5,588 1 5,588 40,232 ,000 

Domain 9,012 5 1,802 12,977 ,000 
Year 5,261 4 1,315 9,470 ,000 
Domain * Year 2,023 18 ,112 ,809 ,688 
Error 28,613 206 ,139   
Total 208,541 239    
Corrected Total 73,873 238    

R Squared = ,613 (Adjusted R Squared = ,553) 
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Table 7 - Regression Results  
Dependent Variable: Patent activity 

Number of KGIs/Companies involved in scientific research activity: Residual values (corrected for total amount 
of publications)  

Time Period: 1997 – 2001 
Variable B SE Beta T Sign T 
(Constant) 251,037 46,944  5,348 ,000 
Stem cells Y/N -1,121 ,132 -,558 -8,477 ,000 
Conductive Polymers Y/N -,469 ,086 -,283 -5,423 ,000 
Nano Electronics Y/N -,227 ,088 -,176 -2,583 ,010 
Fuel Cells Y/N -,217 ,081 -,143 -2,667 ,008 
Alzheimer Y/N -,476 ,090 -,307 -5,279 ,000 
Year -,126 ,023 -,250 -5,369 ,000 
Amount of Publications ,351 ,061 ,468 5,730 ,000 
Average Amount of Non Patent References ,309 ,071 ,237 4,366 ,000 
Population ,197 ,062 ,219 3,165 ,002 
Number of KGIs involved in scientific activity  
(Residual Value) 

,089 ,027 ,164 3,344 ,001 

Number of companies involved in scientific activity 
(Residual Value) 

,139 ,025 ,254 5,554 ,000 
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