637 research outputs found

    Desempenho de híbridos de milho no norte do Rio Grande do Sul.

    Get PDF
    O milho (Zea mays) apresenta benefícios na alimentação humana e animal, é o cereal mais cultivado no mundo, possuindo como ingrediente uma boa fonte energética

    Avaliação de híbridos de milho no noroeste do Rio Grande do Sul safra 2019/2020.

    Get PDF
    O milho (Zea mays) é o cereal mais cultivado e consumido no mundo, devido ao seu elevado valor nutricional. O melhoramento do milho busca o desenvolvimento de cultivares adaptadas e com bom potencial produtivo

    Ultrathin 2 nm gold as ideal impedance-matched absorber for infrared light

    Full text link
    Thermal detectors are a cornerstone of infrared (IR) and terahertz (THz) technology due to their broad spectral range. These detectors call for suitable broad spectral absorbers with minimalthermal mass. Often this is realized by plasmonic absorbers, which ensure a high absorptivity butonly for a narrow spectral band. Alternativly, a common approach is based on impedance-matching the sheet resistance of a thin metallic film to half the free-space impedance. Thereby, it is possible to achieve a wavelength-independent absorptivity of up to 50 %, depending on the dielectric properties of the underlying substrate. However, existing absorber films typicallyrequire a thickness of the order of tens of nanometers, such as titanium nitride (14 nm), whichcan significantly deteriorate the response of a thermal transducers. Here, we present the application of ultrathin gold (2 nm) on top of a 1.2 nm copper oxide seed layer as an effective IR absorber. An almost wavelength-independent and long-time stable absorptivity of 47(3) %, ranging from 2 μ\mum to 20 μ\mum, could be obtained and is further discussed. The presented gold thin-film represents analmost ideal impedance-matched IR absorber that allows a significant improvement of state-of-the-art thermal detector technology

    Speech and language therapy approaches to managing primary progressive aphasia

    Get PDF
    The term primary progressive aphasia (PPA) describes a group of neurodegenerative disorders with predominant speech and language dysfunction as their main feature. There are three main variants – the semantic variant, the nonfluent or agrammatic variant and the logopenic variant – each with specific linguistic deficits and different neuroanatomical involvement. There are currently no curative treatments or symptomatic pharmacological therapies. However, speech and language therapists have developed several impairment-based interventions and compensatory strategies for use in the clinic. Unfortunately, multiple barriers still need to be overcome to improve access to care for people with PPA, including increasing awareness among referring clinicians, improving training of speech and language therapists and developing evidence-based guidelines for therapeutic interventions. This review highlights this inequity and the reasons why neurologists should refer people with PPA to speech and language therapists

    An Integrated Strategy to Study Muscle Development and Myofilament Structure in Caenorhabditis elegans

    Get PDF
    A crucial step in the development of muscle cells in all metazoan animals is the assembly and anchorage of the sarcomere, the essential repeat unit responsible for muscle contraction. In Caenorhabditis elegans, many of the critical proteins involved in this process have been uncovered through mutational screens focusing on uncoordinated movement and embryonic arrest phenotypes. We propose that additional sarcomeric proteins exist for which there is a less severe, or entirely different, mutant phenotype produced in their absence. We have used Serial Analysis of Gene Expression (SAGE) to generate a comprehensive profile of late embryonic muscle gene expression. We generated two replicate long SAGE libraries for sorted embryonic muscle cells, identifying 7,974 protein-coding genes. A refined list of 3,577 genes expressed in muscle cells was compiled from the overlap between our SAGE data and available microarray data. Using the genes in our refined list, we have performed two separate RNA interference (RNAi) screens to identify novel genes that play a role in sarcomere assembly and/or maintenance in either embryonic or adult muscle. To identify muscle defects in embryos, we screened specifically for the Pat embryonic arrest phenotype. To visualize muscle defects in adult animals, we fed dsRNA to worms producing a GFP-tagged myosin protein, thus allowing us to analyze their myofilament organization under gene knockdown conditions using fluorescence microscopy. By eliminating or severely reducing the expression of 3,300 genes using RNAi, we identified 122 genes necessary for proper myofilament organization, 108 of which are genes without a previously characterized role in muscle. Many of the genes affecting sarcomere integrity have human homologs for which little or nothing is known

    Calpains Mediate Integrin Attachment Complex Maintenance of Adult Muscle in Caenorhabditis elegans

    Get PDF
    Two components of integrin containing attachment complexes, UNC-97/PINCH and UNC-112/MIG-2/Kindlin-2, were recently identified as negative regulators of muscle protein degradation and as having decreased mRNA levels in response to spaceflight. Integrin complexes transmit force between the inside and outside of muscle cells and signal changes in muscle size in response to force and, perhaps, disuse. We therefore investigated the effects of acute decreases in expression of the genes encoding these multi-protein complexes. We find that in fully developed adult Caenorhabditis elegans muscle, RNAi against genes encoding core, and peripheral, members of these complexes induces protein degradation, myofibrillar and mitochondrial dystrophies, and a movement defect. Genetic disruption of Z-line– or M-line–specific complex members is sufficient to induce these defects. We confirmed that defects occur in temperature-sensitive mutants for two of the genes: unc-52, which encodes the extra-cellular ligand Perlecan, and unc-112, which encodes the intracellular component Kindlin-2. These results demonstrate that integrin containing attachment complexes, as a whole, are required for proper maintenance of adult muscle. These defects, and collapse of arrayed attachment complexes into ball like structures, are blocked when DIM-1 levels are reduced. Degradation is also blocked by RNAi or drugs targeting calpains, implying that disruption of integrin containing complexes results in calpain activation. In wild-type animals, either during development or in adults, RNAi against calpain genes results in integrin muscle attachment disruptions and consequent sub-cellular defects. These results demonstrate that calpains are required for proper assembly and maintenance of integrin attachment complexes. Taken together our data provide in vivo evidence that a calpain-based molecular repair mechanism exists for dealing with attachment complex disruption in adult muscle. Since C. elegans lacks satellite cells, this mechanism is intrinsic to the muscles and raises the question if such a mechanism also exists in higher metazoans

    Transcriptional Downregulation of Rice rpL32 Gene under Abiotic Stress Is Associated with Removal of Transcription Factors within the Promoter Region

    Get PDF
    Background: The regulation of ribosomal proteins in plants under stress conditions has not been well studied. Although a few reports have shown stress-specific post-transcriptional and translational mechanisms involved in downregulation of ribosomal proteins yet stress-responsive transcriptional regulation of ribosomal proteins is largely unknown in plants. Methodology/Principal Findings: In the present work, transcriptional regulation of genes encoding rice 60S ribosomal protein L32 (rpL32) in response to salt stress has been studied. Northern and RT-PCR analyses showed a significant downregulation of rpL32 transcripts under abiotic stress conditions in rice. Of the four rpL32 genes in rice genome, the gene on chromosome 8 (rpL32_8.1) showed a higher degree of stress-responsive downregulation in salt sensitive rice variety than in tolerant one and its expression reverted to its original level upon withdrawal of stress. The nuclear run-on and promoter:reporter assays revealed that the downregulation of this gene is transcriptional and originates within the promoter region. Using in vivo footprinting and electrophoretic mobility shift assay (EMSA), cis-elements in the promoter of rpL32_8.1 showing reduced binding to proteins in shoots of salt stressed rice seedlings were identified. Conclusions: The present work is one of the few reports on study of stress downregulated genes. The data revealed that rpL32 gene is transcriptionally downregulated under abiotic stress in rice and that this transcriptional downregulation i
    corecore