813 research outputs found

    A Solution to the Circular Restricted N Body Problem in Planetary Systems

    Get PDF
    This thesis is a brief look at a new solution to a problem that has been approached in many different ways in the past - the N body problem. By focusing on planetary systems, satellite dynamics can be modeled in a fashion similar to the Circular Restricted Three Body Problem (CR3BP) with the Circular Restricted N Body Problem (CRNBP). It was found that this new formulation of the dynamics can then utilize the tools created from all the research into the CR3BP to reassess the possibility of different complex trajectories in systems where there are more than just two large gravitational bodies affecting the dynamics, namely periodic and semi-periodic orbits, halo orbits, and low energy transfers It was also found that not only system dynamics, but models of the Jacobi constant could also be formulated similarly to the CR3BP. Validating the authenticity of these new sets of equations, the CRNBP dynamics are applied to a satellite in the Earth-Moon system and compared to a simulation of the CR3BP under identical circumstances. This test verified the dynamics of the CRNBP, showing that the two systems created almost identical results with relatively small deviations over time and with essentially identical path trends. In the Jovian system, it was found the mass ratio required to validated the assumptions required to integrate the equations of motion was around .1%\%. Once the mass ratio grew past that limit, trajectories propagated with the CRNBP showed significant deviation from trajectories propagated with a higher fidelity model of Newtonian motion. The results from the derivation of the Jacobi constant are consistent with the 3 body system, but they are fairly standalone

    Endothelial cells, endoplasmic reticulum stress and oxysterols

    Get PDF
    Oxysterols are bioactive lipids that act as regulators of lipid metabolism, inflammation, cell viability and are involved in several diseases, including atherosclerosis. Mounting evidence linked the atherosclerosis to endothelium dysfunction; in fact, the endothelium regulates the vascular system with roles in processes such as hemostasis, cell cholesterol, hormone trafficking, signal transduction and inflammation. Several papers shed light the ability of oxysterols to induce apoptosis in different cell lines including endothelial cells. Apoptotic endothelial cell and endothelial denudation may constitute a critical step in the transition to plaque erosion and vessel thrombosis, so preventing the endothelial damaged has garnered considerable attention as a novel means of treating atherosclerosis. Endoplasmic reticulum (ER) is the site where the proteins are synthetized and folded and is necessary for most cellular activity; perturbations of ER homeostasis leads to a condition known as endoplasmic reticulum stress. This condition evokes the unfolded protein response (UPR) an adaptive pathway that aims to restore ER homeostasis. Mounting evidence suggests that chronic activation of UPR leads to cell dysfunction and death and recently has been implicated in pathogenesis of endothelial dysfunction. Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation, maintaining basal levels of autophagic activity it is critical for cell survival. Several evidence suggests that persistent ER stress often results in stimulation of autophagic activities, likely as a compensatory mechanism to relieve ER stress and consequently cell death. In this review, we summarize evidence for the effect of oxysterols on endothelial cells, especially focusing on oxysterols-mediated induction of endoplasmic reticulum stress

    Up-regulation of prostaglandin biosynthesis by leukotriene C4 in elicited mice peritoneal macrophages activated with lipopolysaccharide/interferon-gamma

    Get PDF
    Leukotrienes (LT) and prostaglandins (PG) are proinflammatory mediators generated by the conversion of arachidonic acid via 5-lipoxygenase (5-LO) and cyclooxygenase (COX) pathways. It has long been proposed that the inhibition of the 5-LO could enhance the COX pathway leading to an increased PG generation. We have found that in in vitro models of inflammation, such as mice-elicited peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon- γ (IFN-γ), the deletion of the gene encoding for 5-LO or the enzyme activity inhibition corresponded to a negative modulation of the COX pathway. Moreover, exogenously added LTC4, but not LTD4, LTE 4, and LTB4, was able to increase PG production in stimulated cells from 5-LO wild-type and knockout mice. LTC4 was not able to induce COX-2 expression by itself but rather potentiated the action of LPS/IFN-γ through the extracellular signal-regulated kinase-1/2 activation, as demonstrated by the use of a specific mitogen-activated protein kinase (MAPK) kinase inhibitor. The LT-induced increase in PG generation, as well as MAPK activation, was dependent by a specific ligand-receptor interaction, as demonstrated by the use of a cys-LT1 receptor antagonist, although also a direct action of the antagonist used, on PG generation, cannot be excluded. Thus, the balance between COX and 5-LO metabolites could be of great importance in controlling macrophage functions and consequently, inflammation and tumor promotion

    Performance assessment of a vibro-finishing technology for additively manufactured components

    Get PDF
    Metal components produced by Additive Manufacturing (AM) technologies usually exhibit a rough surface, that in certain applications can result detrimental for the part’s functionality. Thus, it is of great interest to study the finishing processes that can be applied to the surfaces, both external and internal, of AM components. The aim of this work is the evaluation of the capabilities of a vibro-finishing process in the treatment of samples produced by Laser-Powder Bed Fusion (L-PBF) from AlSi10Mg powders. In this research, the abrasive media is identified, and the surface quality improvement is analysed in terms of surface roughness and modifications induced by the finishing treatment (i.e., edge rounding, material loss) against finishing duration. The cost of the treatment is also evaluated

    Additive manufacturing for an urban vehicle prototype: re-design and sustainability implications

    Get PDF
    Additive Manufacturing (AM), allowing the layer-by-layer fabrication of products characterized by a shape complexity unobtainable with conventional manufacturing routes, has been widely recognized as a disruptive technology enabling the transition to the Industry 4.0. In this context, the design of a Portable Assisted Mobile Device (PAMD) prototype was considered as a case study. The best practices of the re-design for AM were applied to three of the main structural components, and the most sustainable manufacturing approach between AM processes and the conventional ones was identified with respect to cumulative energy demand, carbon dioxide emissions and costs. The paper aims to promote the debate concerning the correlation between design choices, process selection and sustainable product development

    Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype dronpa

    Get PDF
    Photochromic fluorescent proteins play key roles in super-resolution microscopy and optogenetics. The light-driven structural changes that modulate the fluorescence involve both trans-to-cis isomerization and proton transfer. The mechanism, timescale and relative contribution of chromophore and protein dynamics are currently not well understood. Here, the mechanism of off-to-on-state switching in dronpa is studied using femtosecond-to-millisecond time-resolved infrared spectroscopy and isotope labelling. Chromophore and protein dynamics are shown to occur on multiple timescales, from picoseconds to hundreds of microseconds. Following excitation of the trans chromophore, a ground-state primary product is formed within picoseconds. Surprisingly, the characteristic vibrational spectrum of the neutral cis isomer appears only after several tens of nanoseconds. Further fluctuations in protein structure around the neutral cis chromophore are required to form a new intermediate, which promotes the final proton-transfer reaction. These data illustrate the interplay between chromophore dynamics and the protein environment underlying fluorescent protein photochromism

    Simons Observatory: Broadband Metamaterial Anti-Reflection Cuttings for Large Aperture Alumina Optics

    Full text link
    We present the design, fabrication, and measured performance of metamaterial Anti-Reflection Cuttings (ARCs) for large-format alumina filters operating over more than an octave of bandwidth to be deployed on the Simons Observatory (SO). The ARC consists of sub-wavelength features diced into the optic's surface using a custom dicing saw with near-micron accuracy. The designs achieve percent-level control over reflections at angles of incidence up to 20∘^\circ. The ARCs were demonstrated on four 42 cm diameter filters covering the 75-170 GHz band and a 50 mm diameter prototype covering the 200-300 GHz band. The reflection and transmission of these samples were measured using a broadband coherent source that covers frequencies from 20 GHz to 1.2 THz. These measurements demonstrate percent-level control over reflectance across the targeted pass-bands and a rapid reduction in transmission as the wavelength approaches the length scale of the metamaterial structure where scattering dominates the optical response. The latter behavior enables the use of the metamaterial ARC as a scattering filter in this limit.Comment: 9 pages, 8 figures, submitted to Applied Optic

    Large-scale reconfigurable continuously-coupled integrated optical circuits for photonic quantum information processing

    Get PDF
    Quantum photonic platforms are emerging as the most promising to prove a computational advantage. Here we present a novel reconfigurable integrated interferometer for large-scale implementation of Boson Sampling based on the continuous coupling of waveguides
    • …
    corecore