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ABSTRACT

A Solution To The Circular Restricted N Body Problem In Planetary Systems

Jay R. Iuliano

This thesis is a brief look at a new solution to a problem that has been approached

in many different ways in the past - the N body problem. By focusing on planetary

systems, satellite dynamics can be modeled in a fashion similar to the Circular Re-

stricted Three Body Problem (CR3BP) with the Circular Restricted N Body Problem

(CRNBP). It was found that this new formulation of the dynamics can then utilize

the tools created from all the research into the CR3BP to reassess the possibility of

different complex trajectories in systems where there are more than just two large

gravitational bodies affecting the dynamics, namely periodic and semi-periodic or-

bits, halo orbits, and low energy transfers It was also found that not only system

dynamics, but models of the Jacobi constant could also be formulated similarly to

the CR3BP. Validating the authenticity of these new sets of equations, the CRNBP

dynamics are applied to a satellite in the Earth-Moon system and compared to a sim-

ulation of the CR3BP under identical circumstances. This test verified the dynamics

of the CRNBP, showing that the two systems created almost identical results with

relatively small deviations over time and with essentially identical path trends. In

the Jovian system, it was found the mass ratio required to validated the assumptions

required to integrate the equations of motion was around .1%. Once the mass ratio

grew past that limit, trajectories propagated with the CRNBP showed significant

deviation from trajectories propagated with a higher fidelity model of Newtonian mo-

tion. The results from the derivation of the Jacobi constant are consistent with the

3 body system, but they are fairly standalone.
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Chapter 1

INTRODUCTION

1.1 Background

Modeling the motion of bodies under the influence of gravity is a non-trivial task as

soon as you get past the most basic form of Kepler two body motion. Perturbations

from other gravitational bodies, bodies with unevenly distributed mass, pressure from

radiation and gases, and even tidal flow make the reliable simulation and tracking

of objects in orbit difficult. Countless papers, methods, and tricks have been pub-

lished and practiced over the last century to create more reliable and effective models,

yet there still remains a large number of unsolved problems in the world of orbital

mechanics. One of the most interesting and prevalent discussions is that of N body

motion. Put more clearly, the question ”What is the best way to simulate the tra-

jectory of small bodies under the influence of several large bodies?” has not yet been

given a great answer, especially not one that can be applied generically.

The first and perhaps the most brutish way to attack difficult orbital problems is

simply to create extremely high fidelity models, models that include every possible

perturbation. The problems with this are obvious, the largest being computation

time. It is often unnecessary to model slight changes in an orbit if your results are

subject to random error on the order of or larger than the perturbation itself. For

example, while it might be pertinent to include the effects of relativity if you are

trying to model the collision of galaxies, doing so on the scale of satellites would be a

waste of time. Even if all unnecessary considerations are removed, having a simulation

that is very high fidelity can increase computation time through arbitrary calculation.

Take, for example, the method of averaging perturbations for low thrust transfers.
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By assuming that the rate of change of right ascension, argument of perigee, and true

anomaly are represented over long periods by a given average rate of change, you

have effectively cut your simulation time in half despite the slight loss in accuracy

Much in the same way that one cannot always average out the changes in certain

orbital elements in high accuracy models, to say that one way of modeling N body

motion is better requires an understanding of the conditions under which the model

is valid. Perhaps it’s the more apparent, then, that the question ”What is the best

way to simulate the trajectory of small bodies under the influence of several large

bodies?” requires knowledge of the specific set of conditions the trajectory needs to

be modeled.

To explore the answers to this problem, and to investigate the possibility of a

different solution to the N body problem in planetary systems specifically is the goal

of this thesis. The first step in completing this task is to decide out which method

is most appropriate for modeling the motion of satellites in the planetary systems

with multiple large bodies in close vicinity. The N body problem has been attacked

in numerous ways for a variety of different scenarios. Astronomers have a number of

different methods for simulating the motion of N bodies when N is greater than 1000

such as in the case of galaxy formation or collision. This involves the well known

Leap-Frog integration technique by which positions of bodies are updated via their

previous position and their projected velocity at a time between the previous time

step and the current one[4]. While the integration method is a generally successful

method, its main benefit is its mathematical stability through the integration process

which is unnecessary when the number of bodies is small. These methods are designed

for enormous numbers of bodies and there are no planetary systems like that in our

solar system. Even Jupiter, with its seemingly endless supply of moons, has only 4

moons that have any significant gravitational impact. Together, the Galilean moons

make up 99.997% of the mass of all of Jupiter’s orbiting bodies.
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The most classic method of simulating N body effects is to take classic Kepler

two body motion and to treat the gravity from each additional body as a small

deviation from that motion. The method of patched conics simply ignores extra

bodies and assumes that the motion of a small body can be approximated by 2

body motion around the body with the largest gravitational influence. As soon as a

satellite (satellite is synonymous for a small body with no notable gravitational impact

throughout this paper) leaves the sphere of influence of one body, it is assumed to no

longer be affected by the first body at all[2]. The problem with this method is that

it doesn’t properly account for scenarios in which the sphere of influence of one body

is contained inside the sphere of influence of another body, such as is the case with

the Earth and its moon. In this case, one of the best ways to model the motion of a

satellite is with the solutions to the planar circular restricted three body problem.

The Planar Circular Restricted 3 Body Problem (CR3BP) reveals a solution to

modeling the dynamics of a satellite in a gravitational systems with 2 large gravita-

tional bodies. This solution allows for the analysis of systems like the Earth-Moon

system with relative ease and without the computationally expensive task of high fi-

delity simulations. The solutions to this problem also open the door to cornucopia of

interesting trajectories, including low energy transfers, which mitigate otherwise huge

4v costs of traditional transfers, stable repeating orbits that cover large swathes in

the sky with convenient and moldable coverage properties, and rapid propagation of

large, long duration orbits that would otherwise be impractical to study, let alone to

calculate on standard household computers and laptops. Particularly useful are halo

orbits and manifolds which act as possible starting points for interplanetary transfers

and high-scope observational missions. For these reasons, this model was the starting

point for the solutions to the problem that this thesis is focused on. Because this

thesis depends so heavily on the ability to recreate the solutions to this problem (in

a different form), it is important that the CR3BP is well understood before diving
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into the actual derivations and results of the paper.

The CR3BP focuses on the motion of a satellite around the barycenter of a given

gravitational system without assuming that the barycenter of the system is centered

on the largest body as is done in Kepler two body motion. The general setup for the

system is given below in Figure 1.1, where µ∗ represents the mass ratio of the large

bodies in the system. If m2 is the smaller body, µ∗ = m2

m1+m2
. In this figure, the mass

of the satellite is given as m3, and distances are normalized to the distance between

the two largest bodies[11].

Figure 1.1: Basic setup for the CR3BP

The derivation for the equations of motion in the rotating synodic frame (the

frame fixed relative to the primary and the secondary) is fairly straight-forward and

well known, and it yields the following set of equations. See Vallado [11] for more

details.

ẍ = 2ẏ + x− (1− µ∗)

r31
(x− µ∗)− µ∗

r32
(x+ 1− µ∗) (1.1)

ÿ = −2ẋ+ y − (1− µ∗)

r31
y − µ∗

r32
y (1.2)

z̈ = −(1− µ∗)

r31
z − µ∗

r32
z (1.3)
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Combining these equations and integrating the result yields the equation for Jacobi’s

Constant, C, a value somewhat akin to gravitational potential when the spacecraft

has zero velocity relative to the synodic frame of the given system.

C = x2 + y2 + 2(
(1− µ∗)

r1
+
µ∗

r2
) (1.4)

These two sets of equations can applied to great effect. The non-intuitive nature of

modeling motion that includes the effects of a second large body makes it incredibly

difficult to imagine how orbits might have complex trajectile paths that are stable or

even quasi-stable. These equations make it much easier to see how, relative to the

rotating frame, orbits that utilize the geometry of the 2 large bodies in their shared

space form intricate and repeating orbits. The Jacobi constant is also a very useful

tool for thinking about the potential of certain orbits and their various and unique

applications. It can be shown, by setting the relative velocity and acceleration to

zero in the equations of motion, that there are specific locations that act as stable

locations relative to the synodic frame. Stated otherwise, if the spacecraft could get to

those points with infinite precision, and no perturbations acted upon the system, the

spacecraft would stay in that location forever. It has been shown that these Lagrange

points (Fig. 1.2) move in true N body simulations, but on a general conceptual level,

it is reasonable to think of them as fixed. The figure below maps out the Jacobi

energy in the Earth-Moon zero velocity space – the plot on the left shows the two

dimension contours with the Lagrange points marked out with ”x”s, and the plot

on the right shows the contours as a three dimensional surface. The plot on the

right shows the negative Jacobi energy because it is more intuitive to think of the

contours as gravity wells. The collinear L1, L2, and L3 Lagrange points are saddle

points, making them inherently unstable and forcing orbits around them to diverge

easily without perfect conditions or continuous correction. The SOHO Mission, for

example, made orbital maneuvers once every 20 days at the most frequent and 146

days at the most infrequent. These maneuvers used between .04 and 1.9 m
s

for each
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Figure 1.2: Energy curves and Lagrange points in the Earth-Moon CR3BP

maneuver [9]. The L4 and L5 points, on the other hand, are valleys, making them very

stable, though their positions make orbits around them less interesting for potential

missions. They also lose the advantage of being near the Moon that the L1 and L2

points have.

Richardson showed in his ”Analytic Construction of Periodic Orbits About the

Collinear Points”[8] that it was possible to form a third order solution for stable orbits

around the first three Lagrange points in a three body system (Fig. 1.3). Halo orbits,

as they’re called due to the fact that they appear as though they are going in a halo

around the moon from the perspective of an Earth observer, exhibit symmetry in

the y-z plane and the x-y plane, but not in the x-z plane due to the irregularities

in equations of motion when in-plane with the two major bodies of system. The

linearized equations of motion of a satellite in a halo orbit around one of the collinear

Lagrange points are given in Richardson[8] as:

x∗ = −Ax cos(λt+ φ) (1.5)

y∗ = kAx sin(λt+ φ) (1.6)

z∗ = Az sin(νt+ ψ) (1.7)

where the superscript indicates that the positions are relative to the chosen Lagrange
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point, not to the barycenter of the system. Ax and Az represent the x-excursion and

the z-excursion. Each represents the maximum distance from the geometric center of

the orbit, which is close to the maximum distance that the satellite travels from the

Lagrange point, though halo orbits tend to have their geometric center misaligned

with the x-y plane. Halo orbits whose centers are above the x-y plane are part of

the ”northern” class of halos, and those below, the ”southern”. The λ is the in-plane

frequency of the orbit, ν the out-of-plane frequency, and φ and ψ are phase offsets

that don’t actually change the shape of the orbit[8]. These equations are simple

sinusoids and must be analyzed further in order to guarantee that they do not violate

the CR3BP dynamics. Solving this problem and actually finding the relationships

required to call the result in the given form a halo orbit is done by setting ν = λ,

making the in-plane and out-pf-plane frequencies the same. The solution is complex

and not worth hashing out here. Figure 1.3 shows the result of the Richardson’s third

body approximations – a family of L2 halo orbits. The halos in the figure represent a

span of possible x-excursions, z-excursions, and both northern and southern classes.

Halos are the basis of orbital manifolds. Manifolds are projections of the possible

trajectories on which a satellite will naturally tend towards or away from halos. This

means that it only takes a very small perturbation to enter or exit from halo orbits

to make what turn out to be very large transfers. To create manifolds from these

equations, the first step is to find the Jacobian of the equations of motion at the

Lagrange point in question. The eigenvectors of the Jacobian associated with its

real eigenvalues give the direction of the perturbation required to produce manifolds

from a given halo orbit - the larger eigenvalue and its paired eigenvector correspond

to unstable manifolds, the smaller to stable manifolds. Unstable manifolds must be

propagated forward in time and show the natural divergence of a body from a given

halo while stable manifolds, propagated backwards in time, give families of trajectories

that tend to converge on a given halo orbit (see Fig. 1.4). Both are important in
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planning low energy orbital transfers for Lunar and interplanetary missions.

Figure 1.3: A Family of Lissajous Halo Orbits

These linearized equations can also be exploited to make families repeating orbits

where the in-plane and out-of-plane frequencies are not the same. Archambeau, Au-

gros, and Trelat [1], for example, exploit this to create families of 8-shaped Lissajous

orbits with unique Lunar coverage properties and their own sets of invariant mani-

folds. The periodic and stability properties of halo orbits are excellent for missions

that require a spacecraft to be more or less fixed relative to a certain position. The

Earth-Moon L1 point, the Lagrange point directly between the Earth and the Moon,

has been used for certain observation missions in the past and the Earth-Sun L1 point

is the object of a number of different studies right now such as the James Web Space

Telescope.

Manifolds are also the basis for a type of orbital transfer called a low energy

8



Figure 1.4: Stable (left) and Unstable (right) manifolds

transfer. Low energy transfers combine Earth-Sun stable manifolds that skim the

surface of the Earth and then associated unstable manifolds that travel from the

Earth-Sun L1 (or L2) to Earth-Moon manifolds. This allows bodies to travel from

the Earth to the moon from nothing more than a launch trajectory. This capability

has been demonstrated with such accuracy that a body was sent to the moon with a

low-energy trajectory and returned to Earth, impacting a small area in a Utah test

range. Other missions utilizing low energy trajectories range from the Apollo missions

to the Surveyor missions and many more (??). In systems with lots of large bodies,

the gas giant systems or the solar system, for example, low energy trajectories open

up the possibility of ”highways” between different planets. These highways would

consist of a series of different manifolds that would allow a spacecraft to travel from

one body to the next with little to no fuel continuously. This could mean that,

potentially, the proper application of manifolds and low energy trajectories could

produce a path that travels to every planet in the solar system and back again with

almost no fuel requirements. The practicality is questionable due to the time scales

this would require and what would most likely be extremely precise initial conditions,

9



but the possibility is exciting nonetheless.

Manifolds also open the door to recurrence plots and Poincare maps, mathematical

methods of studying phase spaces and trajectories as they relate to their ”periodicity”.

Poincare maps allow a trajectory to be analyzed relative to how close different states of

that trajectory are to one another in phase space. Stated otherwise, this mathematical

technique can be used to create complex periodic orbit in sensitive dynamic systems,

such as those in the CR3BP.

Applying the circular restricted three body problem to N bodies is not something

that has been done in the same way that it is being explored in this thesis. There have

been many papers published that have used a technique similar to patched conics in

N body systems where individual three body systems are considered depending on

which moon is closest to the satellite. This method seems viable for many systems,

but it doesn’t account for times when the satellite is close to multiple moons at the

same time. The solutions created in this thesis attempt to address that problem

by solving the circular restricted N body problem in the same way that the circular

restricted 3 body problem addresses some of the issues that arise from patched conics

near the borders of spheres of influence By always considering the effects of every

body that is in the system, motion near the edge of influence of each body could

be more accurately modeled. It also avoids the need for most arbitrary switching

functions.

The first step, then, is to prove that solving is the CRNBP is even possible. Once

a basis of equations is established, the next step is to test the results to see if they are

sensible. One proven to be feasible, these systems need to be applied to a real-world

system and tested to see if they can produce the interesting and useful trajectories

produced in the CR3BP. By showing that the circular restricted N body problem can

be used in more than heuristic ways, the model can then gain viability and possible

10



lend itself to the type of fast, complex trajectile analysis that is so pragmatic, easily

accessible, and low cost. Such is the purpose of this thesis.

The trajectories of planet-bound satellites can be modeled, with closed solutions

for Jacobian energy and the equations of motion, in a similar fashion to the CR3BP

for N bodies given the additional assumption that the barycenter of the planetary

system is near the location of the planet itself. This is valid for any system where the

planets mass is significantly larger than that of its largest satellites. The solution to

this CRNBP can be used to simulate and plan low energy transfers in systems with

more than 3 bodies and it can potentially be used to more accurately plan trajectories

in the Jovian system compared to the traditional method of coupling 3 body systems,

with no notable increase in computational time.

This thesis will be structured as follows. First it will be discussed how the equa-

tions of motion are derived and modeled in the CRNBP as well as the equations for

the Jacobi energy. Both of these will be verified with test cases. Then these equa-

tions will be applied to the Jovian system to look at the existence and possibility of

stable points like Lagrange points, and periodic orbits. After that, halo orbits will be

modeled and analyzed – one method for correcting and maintaining these orbits will

be introduced as well. Finally, the thesis will look at the possibility of using CRNBP

dynamics to model low energy transfers in the Jovian system.
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Chapter 2

THE CIRCULAR RESTRICTED N BODY PROBLEM

2.1 Derivation of the Equations of Motion

The purpose of this first section is to establish the equations of motion of a small body

in an N body system. The results are then verified in the proceeding subsection.

The N-body system is initially constructed in an almost identical fashion to the

3-body problem with the second largest mass being situated 1 distance unit from the

largest body along the x-axis of the synodic frame of the system. The setup is given

in Figure 2.1. The important differences to note in the setup are that the barycenter

of the system is considered to be at the center of the largest body – why this is

assumption is made becomes apparent later on – and the mass ratio is now based

on a mass unit equal to the sum of all of the gravitationally relevant masses. The

system’s synodic frame is relative to the largest two bodies, and, as before, the major

bodies are assumed to be coplanar and moving in circular orbits.

The motion of the satellite around the primary can be modeled using standard

equations of gravitation including the perturbing effect of the secondaries. For the

rest of the discussion in this paper, the ”primary” is the largest body, the planet, and

the ”secondaries” are all of the other large bodies in the system.

~̈r1s = −
N∑
i=1

µi
~ris
r3is
−

N∑
j=2

µj
~r1j
r31j

(2.1)

If µi is the gravitational constant of the ith body with respect to the satellite, i.e.

µ2 = G(m2 + ms) ≈ Gm2, the first summation represents the direct effect, or the

force cause by each body pulling on the satellite itself, and the second summation,

the indirect effect, represents the force caused by each secondary body pulling on the
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Figure 2.1: Basic setup for the CRNBP

primary pulling on the satellite. Basic equations of motion for a body in a synodic

frame give the following formula by comparison:

~̈r1s = ~̈rBs − ω2
Syn(xsatx̂Syn + ysatŷSyn)− 2ωSyn(ẏsatx̂Syn + ẋsatŷSyn) (2.2)

From here on out, the subscript s will be used in place of sat and it will be assumed

that each directional component of any vector is defined relative to the synodic frame

unless otherwise stated. The rate of rotation of the frame can be simplified by scaling

it to equal one. Setting these two equations equal to each other, solving for the

acceleration of the satellite with respect to the inertial frame, and breaking the result

into it’s respective components, the equations of motion resemble those from the

CR3BP but with a small perturbational component from the indirect effect:

ẍs − 2ẏs − xs = −
N∑
i=1

µi
xs − xi
r3is

−
N∑
j=2

µj
xj
r31j

(2.3)

ÿs + 2ẋs − ys = −
N∑
i=1

µi
ys − yi
r3is

−
N∑
j=2

µj
yj
r31j

(2.4)
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z̈s = −
N∑
i=1

µi
zs
r3is

(2.5)

The fact that the bodies are being treated as coplanar eliminates any perturbations in

the ẑ direction, making the z̈s identical to that of the CR3BP. For x̂ and ŷ, however,

the effects of the secondaries pulling on the primary creates an 1
r2

decaying effect with

respect to the secondary’s distance from the primary, exactly what you would expect.

If the secondary is closer, it pulls the primary more, and thus perturbs the satellite

likewise. None of this, however, is exceptional or new in any respect. The equations of

motion for a small body orbiting a large one has been modeled including the n-body

gravitational effects at great length. Then only difference here is the combination of

these well known equations of motion (the right hand side of ??, ??, and ??) with

the motion of a body relative to a rotating frame.

2.1.1 Test Cases

To verify these equations of motion, they were simulated using Matlab’s ode45 func-

tion and compared against simulation of the equations of motion for the 3 body

problem. Both three and two dimensional simulations were run with similar out-

comes so for the sake of simplicity, only two dimensional cases are shown here. Since

the only difference between the two sets of equations is a perturbing force in the x-y

plane, z motion will be identical given the same starting conditions. Both of the plots

in Fig. 2.2 demonstrate the difference between the EOM for the CR3BP and the

CRNBP. Cases where the indirect effect is minimized, orbits that stay close to Earth

or simply far from the moon, tend to exhibit almost identical behavior (left). When

the orbit tends closer to the moon, however, a notable difference becomes apparent,

though both systems tend towards similarly quasi-periodic, sinusoidal trends (right).

Even when the initial position is pushed closer and closer to the L1 point, both space-

craft travel in similar paths. There is only a very small range that causes the two
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Figure 2.2: Trajectory comparisons between the CRNBP (red) and the
CR3BP (blue). Both are given the same starting conditions

types of path to diverge, but, despite this, the similarities between the systems are

still obvious.

A spacecraft is limited to how far it can get away from the Earth in a way that is

related to the Jacobi constant - i.e. when a spacecraft has a given launch energy, that

energy corresponds to some Jacobi value that the satellite cannot fly past without

some change in momentum. Figure 2.3 shows this by overlaying the energy curves

of the system on top of the satellites trajectory. The perturbations caused by the

Figure 2.3: A test trajectory with quasi-stable trans-lunar orbiting prop-
erties. The plot on the left has the energy curves of the system laid over
top of it

moon pulling on Earth, assuming the Earth were at the barycenter of the Earth-
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Moon system, would make the force of gravity felt by the spacecraft less when it

was eclipsed to the moon. We know that this is an assumption, however, and for a

system like the Earth-Moon system where the Earth is displaced from the barycenter

by the mass ratio of the moon, it is more inaccurate. These merely act as a sanity

check. Looking at systems where the mass of the primary is even more dominant, the

assumption of placing the primary at the barycenter becomes less and less inaccurate,

as do the results of these equations. A study should be conducted to see at what point

the mass ratio becomes too large for this assumption to be valid. For the scope of this

thesis, the main focus being the Jovian system and the Solar system, the mass ratios

are exceedingly high – Jupiter accounts for approximately 99.98% of the total mass

of it and its four largest moons – Ganymede, the second largest moon in the system

weighs in at less than .008%. By comparison, the Earth makes up about 98.78% of

the Earth-Moon system, the Moon about 1.22%. This means that, even if the top

four most massive secondary bodies in the Jovian system were to be smashed into

one large mass, that mass would still have to increase by two orders of magnitude in

order to have the same effect that Luna does on Earth.

There was also an important underlying assumption that was added to the CRNBP

that requires verification before moving to a point where the results of this thesis could

even be accepted as academically relevant if not pragmatic. The assumption that the

barycenter of the system is at the center of the largest body needs to be verified as a

valid assumption. It is possible with the delicacy of orbits in these systems that even

moving the barycenter by a fraction of a percentage could have dramatic effects on

both specific trajectories and path trends. Halo orbits, for example, require extremely

high precision to create, and are so sensitive in reality that is impossible to maintain

them for long periods without some kind of correction. Naturally, even without the

barycenter moving, the extra bodies in the CRNBP would cause divergence. It might

even be possible for the adverse dynamics caused by the motion of the barycenter
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would cause entirely different types of orbits. It is therefore imperative to check that

this assumption does not render the results of this thesis functionally useless.

The most straight forward method for testing the validity of this assumption was

to run a simulation wherein this assumption was not made and each body, including

the primary, was propagated according to traditional Newtonian gravitational dy-

namics. Though this method is simple enough conceptually, being nothing more than

a vector sum for the force acting upon each body by all other bodies, it is compu-

tationally expensive and it is weakly chaotic over long periods of time. To mitigate

these issues, comparative simulations were limited in scope and were meant to show

that both systems, the high fidelity simulation without outside perturbations and the

CRNBP, had similar trends given similar initial conditions. Though there might be

noticeable differences in the final state of a body propagated through each system,

what is important for this thesis is the way that the trajectories trend. The goal of

solving these types of problems, for the scope of this thesis, is to validate their poten-

tial as a viable modeling system and to explore the possible types of trajectories that

are valid while the perturbations caused by other large bodies are being considered.

All of the results for these comparison have the same format as the comparisons

made before between the CRNBP and the CR3BP in the Earth-Moon system where

the star indicates the start point of both simulations and the square and the circle

represent the end points of the high precision propagation (HPP) and the CRNBP

respectively. Unless otherwise stated, all the figures show 1 month long simulations.

In most cases, the two cases were almost entirely identical for a reasonable time span,

and the ones that tended to diverge only did so due to strange interactions. Figure

2.4 gives two examples of the former, where both cases stayed together for the entire

simulation with very minor differences on the scale of the problem. For example, the

final difference between the two propagated bodies in the figure on the right is 96,000

km and the 40,000 km on the left. Although this seems like a large distance, it is due
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to the magnitude of the distances in the propagation. Each of these distances only

represents .09% and .04% of the distance between Jupiter and Ganymede respectively.

Figure 2.5, on the contrary, is a case of the latter, where the two cases did not stay

Figure 2.4: Comparison to High Fidelity Propagation

together. The tendency of the two cases to diverge from one another in short time

spans was dictated by whether or not the satellite flew too close to one of the planets.

In this example the black circle identifies the point of divergence before which the

two propagations had stayed together. This occurred because the satellite flew either

extremely close to Ganymede or entirely through it in one of the simulations. For

any trajectories that had very close interactions with the planet or any of the moons,

it seems that the small differences in the locations of the larger bodies due to their

assumed motion did end up having a large impact on the final state of the simulation.

The motion of bodies in the system, however, did trend similarly, which is important

within the scope of this paper. It is also important to gauge the validity that the

center of the largest planet lines up with the barycenter of the system more directly.

To do so, an orbit is chosen that doesn’t appear to have any major interactions with

the planet or any of the moons. This orbit is then pushed out in time until the two

cases, the HPP and CRNBP cases, diverge significantly. The orbit chosen is shown
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Figure 2.5: Divergent Comparison to High Fidelity Propagation

on the left in Fig. 2.6, propagated out for 1 month, and again on the right for 2

months. It is evident that neither of these cases show any significant deviation for

Figure 2.6: Long Duration Comparison to High Fidelity Propagation

one another despite the relatively large time span. To test the assumption further,
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this same orbit was tested in each system with the mass ratio of the Galilean moons

increased above its current value of 0.0207%. By incrementally increasing the mass

ratio of the moons to the planet, it should become clear at what point systems like

the Jovian system can no longer be accurately modeled using these assumptions.

Since we have already tested these equations in the Earth-Moon system, the mass

ratio was initially increased by an order of magnitude, putting it still well below the

Earth-Moon mass ratio of 1.22%. The results for tests for a mass ratio of 0.04%

and 0.1% (Figure 2.7), and 0.2% and 2% (Figure 2.8) are shown below. The first

Figure 2.7: Mass Ratio Tests (x2 and x5)

set of tests show little difference in the results of the two propagations. Even with

a mass ratio of 0.1%, the difference is minimal and the trends of the orbits remain

the same. We do notice, however, a slight elongation of the eccentricity of the high

precision propagation that is exaggerated by pushing the mass ratio up to 0.2%. At

this mass ratio, it is also evident that the motion of the moons is no longer circular,

though it is probably still accurate to say that it behaves similarly to circular orbits.

The slight oscillation of the moons seems to be what is causing the oscillation in the

trajectory of the HPP. The comparison between trajectories when the mass ratio is

around 2% becomes a reductio ad absurdum to the assumption that that the mass
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Figure 2.8: Mass Ratio Tests (x10 and x100)

ratios of the system do not make a large difference in the motion of the satellite. At

this point, which is actually fairly close to the mass ratio of the Earth-Moon system,

the Jovian system breaks down. Not only do the orbits not resemble anything like

circular motion, but the motion of the satellite is wild and unpredictable, certainly

nothing like that from the CRNBP.

The results of this verification are ambiguous for a few reasons. On one hand, it

seems like there are always cases in which the trajectory of the CRNBP can not be

accurately modeled, especially in cases where the satellite comes very close to any of

the major bodies. On the other hand, it seems within the scope of reason to imagine

that, so long as statements about the assurance of the existence of these trajectories

as shown are avoided, the CRNBP has both the form and function of high fidelity

propagation methods without the computationally expensive requirements. For the

Jovian system, this is almost certainly the case. Once the mass ratio of the Jovian

system reaches something like 1%, perhaps even lower, the dynamics break down and

the model no longer functions, but for the majority of cases with the actual mass

ratio of the system, the CRNBP seems to correctly model the trends of orbits. A

more careful look at exactly where this mass ratio breaks apart the assumptions of
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the system would be required to verify the accuracy of the results further.

2.2 The Jacobi Constant

The purpose of this section is to establish the equations for the Jacobi constant in

the N-body problem. The results are straightforward and appear consistent with the

results from the 3-body system. To derive the Jacobi Constant of the associated

system, a similar solution process to that of the CR3BP is required once again. Each

equation, ??, ??, and ??, is multiplied by 2ẋs, 2ẏs, and 2żs respectively.

2ẋs ∗ [ẍs − 2ẏs − xs = −
N∑
i=1

µi
xs − xi
r3is

−
N∑
j=2

µj
xj
r31j

] (2.6)

2ẏs ∗ [ÿs + 2ẋs − ys = −
N∑
i=1

µi
ys − yi
r3is

−
N∑
j=2

µj
yj
r31j

] (2.7)

2żs ∗ [z̈s = −
N∑
i=1

µi
zs
r3is

] (2.8)

Combining theses yields:

LHS = 2(ẋsẍs + ẏsÿs + ższ̈s)− 2(xsẋs + ysẏs) (2.9)

RHS = −2(
N∑
i=1

µi
(xs − xi)ẋs + (ys − yi)ẏs + zsżs

r3is
+

N∑
j=2

µj
xjẋs + yj ẏs

r31j
) (2.10)

Again, we haven’t diverged much from the three body problem. The LHS is identical

and the right hand side only has the second summation from the indirect effect to

differentiate it. Integrating equation ?? is straightforward and uninteresting but

equation ?? requires a little more work.

∫
LHS =

∫
2(ẋsẍs + ẏsÿs + ższ̈s)− 2(xsẋs + ysẏs) = ẋ2s + ẏ2s + ż2s − (x2s + y2s) (2.11)
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∫
RHS = −2(

∫ N∑
i=1

µi
(xs − xi)ẋs + (ys − yi)ẏs + zsżs√

(xs − xi)2 + (ys − yi)2 + z2s
3 +

∫ N∑
j=2

µj
xjẋs + yj ẏs

r31j
)

(2.12)

If you notice that the derivative of the term inside of the square root in the denomi-

nator is the numerator, the first term in ?? becomes trivial to integrate. The second

term, would, however, be impossible to integrate if not for the assumption that the

primary is approximately at the barycenter of the given system. This means the r1j

can be treated as a constant and pulled out of the integral.∫ N∑
j=2

µj
xjẋs + yj ẏs

r31j
=

N∑
j=2

µj
r31j

∫
xjẋs + yj ẏs (2.13)

This is a little tricky to integrate in its current form. Converting the equation into

polar coordinates and only considering one term at a time makes the problem more

approachable. ∫
xjẋs =

∫
rjcos(θj)[

d

dt
(rscos(θs))] (2.14)

Simplifying this expression using separation by parts yields

= rjcos(θj)rscos(θs)−
∫

(ṙjcos(θj)− rj θ̇jsin(θj))rscos(θs) (2.15)

Since we know that ṙj is zero and, since we know that the bodies are in circular orbits,

θ̇j therefore being constant, we can rearrange the equation into the following,

= rjcos(θj)rscos(θs) + θ̇j

∫
(rjsin(θj))rscos(θs) (2.16)

Now we convert back into Cartesian coordinates.

= xjxs + θ̇j

∫
xsyj (2.17)

The solution to the integral with both x and y terms is then,∫
xjẋs + yj ẏs = xjxs + yjys + θ̇j

∫
xsyj − ysxj (2.18)
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We can now focus on the remaining integral. Notice that the integral is equivalent to

the ~rs × ~rj, which can then be rewritten using the sine rule.∫
xsyj − ysxj =

∫
~rs × ~rj =

∫
‖~rs‖ ‖~rj‖ sin(θs − θj) = rsrj

∫
sin(θs − θj) (2.19)

Now we have something that is almost solvable. Since we know that θj is linear in

time, our only concern would be integrating θs. If we remember from the derivation

of the CRNBP, the Jacobi constant is only concerned with the zero velocity values of

C, we know that ẋs = ẏs = żs = 0. If the velocity is zero, the rotational velocity, θ̇s,

is also zero, and θs is, therefore, a constant in time.

rsrj

∫
sin(θs − θj) = (rsrj)(

1

θ̇j
cos(θs − θj)) (2.20)

To simplify this, we can use the formula for angle subtraction and basic polar-

Cartesian conversions.

rsrjcos(θs − θj) = rsrj(cos(θs)cos(θj) + sin(θs)sin(θj)) = xsxj + ysyj (2.21)

We also see that the θ̇j terms cancel out. Plugging this back into ?? yields a relatively

simple result. ∫
xjẋs + yj ẏs = 2(xjxs + yjys) (2.22)

The solution to equation ??, therefore, is given by:∫
RHS = −2(

N∑
i=1

µi
1√

(xs − xi)2 + (ys − yi)2 + z2s
+ 2

N∑
j=2

µj
xjxs + yjys

r31j
) (2.23)

Combing equation ?? with ?? gives us the fully explicated integral of the equations

of motion and the base equation for the Jacobi constant, C. We can also simply ??

by noting that ẋ2s + ẏ2s + ż2s is the speed of the satellite squared, V 2
s .

V 2
s − (x2s + y2s) = −2(

N∑
i=1

µi
1

ris
+ 2

N∑
j=2

µj
xjxs + yjys

r3j
)− C (2.24)
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As said before, we are only concerned with the zero-velocity curves associated with

the Jacobi constant, so Vs is set to zero and equation ?? is rearranged to solve for C.

C = x2s + y2s − 2(
N∑
i=1

µi
ris

+ 2
N∑
j=2

µj
xjxs + yjys

r31j
) (2.25)

Comparing this to equation ??, the equation for the Jacobi constant in the CR3BP,

the only difference is the term that resulted from the inclusion of the indirect effect.

2.2.1 Test Cases

The purpose of this section is to verify the equations derived in the previous section

and, since there is not much discussion of the Jacobi constant after this section,

to briefly explore and analyze the Jacobi energy of the Jovian system. Although it

might seem pertinent to compare the results of these equations to those of the CR3BP

using a well known system like the Earth-Moon system, the results of analyzing the

Jacobi constant of N body system are similar enough to the 3 body system, that the

comparison is not necessary here.

To keep the system closer to the CR3BP and to make the results easier to analyze,

the Galilean moons were all placed along the x-axis. As Fig. 2.9 shows, the energy

curves of the Jovian system are reminiscent of the three body system, with the value

spiking near each of the bodies, but the effects of the secondaries are much less

prominent due to the overwhelming gravitational force from Jupiter. It is also evident

that this system shares the same general trends as any three body system, with

the largest valley in the energy curves occurring at the same radius as the largest

secondary. Although it’s difficult to make out, the interaction between Jupiter and

Ganymede creates a stable region on the opposite side of the planet as Ganymede,

right around where the L3 point would be. When the moons aren’t aligned, the

different valleys move in accordance with the geometry of the system, but the size of

the valleys relative to the system as a whole is unchanged even for different geometries.
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Figure 2.9: Two and three dimensional plots of the Jacobi energy for the
Jovian system

Near Ganymede, the system trends similarly to the area near the Moon in the

Earth-Moon system. The constant energy lines go from one side of the moon to the

other, suggesting that trajectories that go from the Jupiter-Ganymede L1 to the L2

are possible even with the perturbations from the extra bodies. It is shown directly

that this is possible later in this paper. The other moons, however, don’t display the

same type of behavior. The areas in proximity to each of the moons are displayed in

Figure 2.10: Jacobi Energy near Ganymede and Callisto

Figures 2.10 and 2.11. Unlike the area near Ganymede, where there symmetric level

curves surrounding the body, the energy curves near Callisto, Io, and Europa seem to

heavily favor one side. For the moons that are closer to Jupiter than Ganymede, there

appears to more stable regions on the inside of the moon, while the opposite is try for
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moons outside of the radius of Ganymede. This behavior could be extrapolated from

the dramatic slopes displayed in first figure, but the physical explanation for why this

occurs is less obvious. It is possible that the domination of the two largest bodies in

Figure 2.11: Jacobi Energy near Io and Europa

the system, coupled with the fact that Callisto, the only body relatively close in size

to Ganymede, is much farther away, causes the energy of the system to behave fairly

independently of the other moons. Perhaps Jupiter is so large, that only its largest

will every have a significant impact on the surrounding energy space. More testing

would be required to speculate further.

Regardless of why the system’s intricacies behave as they do, it is clear that

the derived equations for the Jacobi constant are feasible and their results behave

similarly to the equations derived from the CR3BP. These equations open up a wealth

of interesting a deep problems that should be explored further. Details and ideas on

how this might be accomplished are discussed below in the section on future work.
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Chapter 3

METHODOLOGY

3.1 Modeling Motion

This section is a brief outline of the techniques and tools used to acquire the results

presented in the following section. All code developed for this paper is available

through Dr. Kira Abercromby, Associate Professor of Aerospace Engineering at Cal-

ifornia Polytechnic State University, San Luis Obispo.

For all dynamic simulations, the basic motion of a satellite is modeled in Matlab

using ode45 with absolute and relative tolerances set to 1e-12. For normal orbital

simulations, this level of accuracy is a little over-the-top, but for this system, motion

is weakly chaotic, meaning that small differences in initial state can lead to big dif-

ferences in the final orbit, making it important to tighten the propagation tolerances.

Modeling the motion of the satellite as a set of first order equations is a trivial task.

To speed up the calculations and to simply any optimization problems, everything

is translated into canonical units, where one distance unit (DU) was equivalent to the

distance between the primary and the largest secondary, one mass unit (MU) was

equivalent to the sum of the masses of the primary and the secondaries, and the

period of the largest secondary body was set to 2π TU. The end result of this is that

Newton’s Gravitational Constant becomes equal to 1, and the gravitational constants

of each major body (µi/j), therefore, is equal to each bodies canonical mass (µ =
Mj

MU
).

See Table 4.1 for more details.

Another important step in simplifying the problem and speeding up calculations

is utilizing the circular orbit assumption to track the secondaries. Instead of having

to painstakingly propagate each body through, the position of each body could be
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treated as a simple percentage around a circle is has traveled in a given time. To figure

out how fast each body moved, the mean motion is calculated based on the semimajor

axis of the body. This mean motion of the largest secondary is then subtracted from

each of these values to determine the relative mean motion of each of the bodies in the

synodic frame, the frame of interest for these problems, and the frame in which the

equations of motion of the small body were calculated. This leaves the primary and

the largest secondary fixed and causes the secondaries outside the largest secondary

to move clockwise, those inside to move counterclockwise. All four of the Galilean

moons move in retrograde orbits. It was assumed that every smaller secondary had

an arbitrary starting position and rotated in the same direction in the inertial frame.

This technique effectively turned the position of each of the secondary bodies into

a lookup table or a couple lines of easy calculation, greatly speeding up the process

compared to what would be required to propagate even a simple circular orbit with

a standard orbital propagator.

3.2 Calculating the Jacobian Energy and Characterizing Stability

The Jacobi Constant was relatively easy to calculate once the equation for doing

so are established. Since each energy map of the system corresponded to a unique

configuration of the planet’s moons, the calculations need to be done at every time

step. To avoid the large computation time required, the areas of interest were limited

to areas near the secondaries and to the entire area with the primary and secondaries

included, the main difference between the two being precision and scale. Each of these

were pushed forward in time with linear steps and analyzed independent of time.

To characterize stability in a system,analytically solving for points that were truly

stable is most likely impossible because the nature of the problem is such that there

is no fixed point that has zero acceleration relative to the system as there are in
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the CR3BP. Instead, there are only areas of very low relative acceleration. These

areas were found and then observed over long periods to establish whether they were

consistent, predictable, etc. A similar type of searching was used to determine which

point, if any, had the lowest acceleration at any given time. This points were tracked

over time as well, giving insightful looks into how the perturbations from the other

large bodies pulls around the would-be Lagrange points.

3.3 Manifold Investigation

Halo orbits, trajectories that periodically orbit Lagrange points, in 3 body systems

require a very high level of accuracy in order to maintain. Since there are perturbing

bodies in motion in N body systems, one could imagine a time varying solution to

repeating halo orbits, adding a periodic perturbation with a frequency equal to that

of the associated body, or a solution in which some minimum 4v could be allocated

to correct the orbit each revolution, but both of these are well beyond the scope of

this thesis. In order to model halo orbits with N bodies, the extra bodies are simply

ignored to get an initial guess and then put back into the dynamics to converge

upon a solution for halos in a given orientation of the system. The particular halo

orbits analyzed are found using the third order approximation technique outlined by

Richardson[8] and converged upon using a simplistic shooting method that, although

more difficult to control and slower than the state transition matrix modification

used by Howell [5], can use CRNBP dynamics. Since propagating manifolds required

knowledge of the Jacobian of the system at the Lagrange point being orbited, the

associated state transition matrix was also calculated in the three body system. It

would be possible to take the point of minimum acceleration discussed above and find

the Jacobian there, but for simplicity and speed, this technique was less desirable.

It is important to note that these manifolds are therefore not invariant manifolds
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since they are constructed with 3 body assumptions and propagated with N body

assumptions. Instead, these manifolds represent a perturbed form of the invariant

manifolds from the three body system.

Low energy transfers were constructed similarly to halos and manifolds. When

manifolds that began under the influence of the Jovian N body system exited the

sphere of influence of Jupiter, the trajectories were switched to CR3BP motion in the

Sun-Jupiter system and visa-versa.
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Chapter 4

RESULTS

Before going into the detailed results, it is also important to lay out the basic foun-

dation on which each of the sets of tests was run. Since the underlying assumption

that the largest mass is approximately at the barycenter of the given system, and

all of the secondaries are in circular orbits around that barycenter, it was important

to find systems where this was not far from the truth. The first major contenders

were the gas giants, since they are enormous and tend to have lots of large bodies

orbiting them, to act as case studies. Saturn was eliminated because of the difficulty

modeling the effects of its rings, though this could be added on later as a pertur-

bation to the given system. Saturn’s mass ratios are very interesting, being much

closer than those in other systems - on the order of the ratio between the Earth and

its moon’s mass – making this an unfortunate exclusion. The remaining gas giants -

Jupiter, Neptune, and Uranus - were all viable. Jupiter has 4 of the largest 20 objects

in the solar system within it’s influence, Neptune two, Uranus four, but the system

is more applicable to Jupiter because of practicality. Missions to Jupiter are simply

much more feasible with current propulsion technology than missions to Neptune or

Uranus, with the latter potentially requiring decades of flight time. Serious consid-

eration was also given to analyzing the solar system. Not only would this be one of

the most interesting systems, it is an excellent example of a system that meets the

restricting assumptions, but, like Uranus and Neptune, it was not chosen because

any transfers that could potentially utilize, or visit other planets, would be inherently

lengthy and therefore less useful. Jupiter and its four largest moons (the Galilean

moons: Ganymede, Europa, Io, and Callisto by mass) made up the system consid-

ered in the following analysis (unless otherwise stated). Some numbers were run from
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the CRNBP against the Earth-Moon CR3BP as sanity checks, but the distance of

the Earth-Moon barycenter from the Earth makes the assumptions of the former less

likely to be accurate than those of the latter. The majority of experiments were lim-

ited to the Jovian system and the Sun-Jupiter system with the Sun-Jupiter system

modeled as the sum of major five masses in the system centered at Jupiter’s position.

The first ubiquitous step in analyzing theses systems was to put all the associated

constant values into canonical units. Though it was more difficult to manipulate

these to measure distances in terms of mass ratios (as done in the CR3BP), putting

all units into canonical form simplified the calculations and sped up computation.

For this thesis, a distance unit (DU) was defined as the distance between the largest

secondary and the primary, a time unit (TU) was defined such that the period of the

largest secondary was 1, and a mass unit (MU) was defined as the sum of the masses

of the primary and the secondaries. Each unit conversion is given in Table 4.1. This

Table 4.1: Canonical Conversions

Jupiter-Galilean System Sun-Jupiter System

Unit Value Unit Value Derivation

Mass (1 MU) 1.8984e27 kg Mass (1 MU) 1.9907e30 kg
∑
m

Distance (1 DU) 1.0704e06 km Distance (1 DU) 7.7830e08 km ||r2||

Time (1 TU) 9.8382e04 s Time (1 TU) 3.4463e07 s P2

2π

system is very natural since it has the 1st moon fixed on the coordinate (1, 0) moving

at 1DU
1TU

with a rotational rate of 2π rad
TU

, meaning it completes its rotation in 1 TU.

From there, everything can be understood on a simple relative scale.
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4.1 Stable Regions, and Quasi-stable orbits

The goal of this section is to show how the N body system equations of motion can

be applied in ways similar to those of the 3 body system to yield locations that are

more or less stable – locations like Lagrange points. This is section also looks at the

possibility of created and mapping unique periodic and quasi-periodic orbits within

the N body system. Although halo orbits probably fall more accurately under the

title of ”quasi-stable orbits,” since they are the basis for manifolds and low energy

transfers, they are discussed at length in their own section.

In order to find Lagrange points, or stable points like them, the first step is to

see if it is possible to find an analytic solution to the equations of motion with the

velocities and accelerations set to zero. This proves to be incredibly difficult, if not

impossible, due to the extra term added by perturbation from the extra bodies. Not

only that, but any solution found will only be a valid solution for one given planetary

configuration, and will therefore have to be reevaluated constantly as the planets

process. For this reason, a numeric search seems to be the more reasonable route.

Not only will it avoid the mess of trying to solve what is at least a very difficult set

of equations to solve, but, with modern computing, a numeric search is quick and

effortless even for a large number of time steps so long as there we have a ballpark

guess of where the points of minimum acceleration in the system are located. Using

the Lagrange points of the associated 3 body system as a starting guess works well.

By doing a refined grid search and narrowing down a simple gradient plot of the

acceleration in the n-body system relative to the zero-velocity space, the point of

minimum acceleration (it is likely that there is no point of zero acceleration) can be

found continuously as the bodies in the system are propagated forward in time. The

results are shown for the Jupiter-Ganymede pseudo-L1 point in Fig. 4.1 and Fig. 4.2

for a high precision, short duration propagation (high precision in terms of the detail

34



of the grid search, not in terms of the method of propagation) and low precision, long

duration propagation respectively. Both of these plots show that the movement of the

point is consistent, but is constrained to a certain degree. It’s hard to say whether

the area that is cut out by the movement of the point represents an area that it

would be possible to stay within for a very long period without orbital corrections

or whether it is simply impossible to stay anywhere in the system without constant

corrections. The latter seems more likely, though further investigation would be

required to reach a definitive answer. Regardless, the motion of the point of minimum

acceleration between the two largest bodies, the most impacting gravitational bodies

in the system, moves on the order of hundreds of kilometers in several months simply

due to the perturbations from the other secondary bodies. The motion of this point

also seems bounded and periodic. This opens the door to a entirely new kind of halo

orbit that would never occur in the CR3BP system. Even with incredible precision,

traditional halo orbits in any N body system would decay very quickly and would

require higher amounts of 4v to maintain than their theoretical counterparts from

the CR3BP. There might be a solution to linearized motion for halo orbits about an

oscillating point like the one being shown, but that would be an entire project in

itself. It also seems that more simple periodic orbits, like the ones shown later in this

section, would also naturally diverge, meaning truly periodic orbits in any N body

system would be impossible. Even in the circular restricted three body case, it is very

difficult to find orbit that are periodic for extended periods without going to extremely

high accuracies. Halo orbits, for example, will often diverge within relatively short

time spans if their trajectories are not accurate on the order of meters. The N-body

system exhibits this kind of behavior as well, but to a larger extent – it is easy enough

to find orbits that have periodic or quasi-periodic properties, but it is very difficult

to find trajectories that repeat on large time scales. It is likely that the N body

system’s perturbations keep truly periodic orbit from occurring due to the fact that
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Figure 4.1: Motion of the ”Pseudo-Lagrange” Jupiter-Ganymede L1 point
for 1 Week

it would take astronomical time periods for the secondaries of the system to line up

in any given geometric orientation multiple times, but finding orbits that are close

to periodic turns out to be trivial. To find these quasi-periodic orbits, an arbitrary

location is picked and a simple shooting method converges on any orbit starting in

the given position that would return to the initial position and velocity. To help the

solver, only positions along the x-axis are chosen and initial guesses for the starting

velocity are only in the y-direction. This, coupled with a cost function that valued

orbits that crossed the x-axis with velocity vectors consisting of only y components,

is able to converge on dozens of different and telling orbits. The first example given

in Fig. 4.3 shows one such orbit.

The orbit is unique in two important respects. First, it is not symmetric about
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Figure 4.2: Motion of the ”Pseudo-Lagrange” Jupiter-Ganymede L1 point
for an extended period

the x-axis, meaning that it is boosted by one of the secondaries (Ganymede). Second,

it has a decent range of possible observation locations relative to the Jovian system.

This orbit passes close enough to get close up images of every single major moon, a

very close look at Ganymede, as well as a variety of different looks at Jupiter itself.

The fact that this orbit uses a flyby of Ganymede also means that this orbit would

consistently allow for a close look at the moon without having to use 4v to slow

down a spacecraft into an orbit around the body and it would allow for the ability to

change trajectories to more closely examine another moon or the planet itself without

using the fuel required to exit a low orbit around the moon. The second example

(Fig. 4.3) shows that it is possible to construct similar orbits in three dimensions,

though did prove to be more difficult. Trajectories that satisfied the requirements in
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three dimensions could not have the additional requirement that they would intersect

the x-axis with no x and no z velocity, making it more difficult for the function

to converge on possible solutions. More complex and interesting three-dimensional

periodic orbits are given below in Fig. 4.4. The usefulness of these orbits beyond their

Figure 4.3: Examples of quasi-periodic orbits

aesthetic value is probably questionable, but they might be able to provide interesting

viewing angles of the planet and its moons that planar orbits would be unable to do.

It is also possible that these orbits could provide interesting measurements of Jupiters

enormous magnetosphere. Regardless of their legitimate practical implications, both

of these orbits demonstrate that nearly periodic orbits are possible in three dimensions

in the CRNBP. Example 3, given in Fig. 4.5, is an orbit more reminiscent of those

Figure 4.4: Out-of-plane quasi-periodic orbits
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that are commonly found in the CR3BP. It is symmetric about the x-axis, it starts

and ends near one of the Jupiter-Ganymede Lagrange points, and it goes around the

moon once per period before its exodus to the L3 point and back. All of these orbits,

however, are only nearly periodic, not truly so. Every one degrades or is shifted

asynchronously with its period over time, they are simply shown for a single orbit to

emphasize how close they are to being truly periodic. The fourth example in the same

figure demonstrates this property. The most telling aspect of this orbit is the non-

uniform separation of the segments of each consecutive pass. If the orbit was periodic,

even over some long time span, there would a consistent change in the flight path on

each pass which is clearly not the case. Whether or not this makes the orbit more

or less useful would be dependent on the mission, but from this two generalizations

can be gleamed: one, perfectly repeating orbits in the N-body system are either non-

existent, very difficult to find, or only happen over extremely long time periods, and

two, the general behavior of a trajectory is only affected by the perturbational pull of

the secondaries when the orbit is sensitive to small changes. Fig. 4.6 shows one such

case of the latter behavior. This figure shows an orbit around Ganymede that diverges

Figure 4.5: Planar periodic orbits

after a single pass despite the fact that it meets the convergence criteria for periodic
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orbits specified by the cost function used for all of the other given examples. Although

it isn’t shown, the divergence causes the orbit to change dramatically depending on

the precision of the propagation. In one case, it will quickly crash into Ganymede,

and in another, it will escape its immediate influence. In both cases, the first pass

appears as though the trajectory will be stable for at least some amount of time. The

sensitivity of certain orbits should not be overlooked for this reason – although there

might exist families of orbits that are seemingly stable in the 3 body system, the pull

from other secondaries can easily perturb a body enough to drastically alter its final

state. Take the trajectory shown in 4.7 as a final proof of the sensitivity of orbits in

Figure 4.6: Trans-Ganymede Periodic Orbit

the CRNBP system. This orbit is a surprising result because it satisfies the simple 2

dimensional requirements of periodicity, namely that the velocity was purely in the

y-direction when the body crossed the x-axis, despite being a seemingly chaotic 3

dimensional orbit. Starting around .8 DU along the x-axis with a small z component

and an initial velocity only in the y-direction, the body orbits in a strange, nearly-

circular orbit for two or three passes and then it started to slowly diverge. After a
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small divergence from the apparently circular path, the divergence became dramatic,

causing the body to show changes in its z component much larger than it’s initial

position and velocity would suggest. It’s important to remember that this trajectory

Figure 4.7: A highly irregular orbit with unique viewing coverage proper-
ties

is accomplished with no thrust or 4v whatsoever, it occurs naturally in the system.

Changes of this magnitude are generally only possible in the CR3BP with flybys or

thrust, both of which are more expensive from a mission standpoint than passively

allowing perturbations to take the spacecraft where they will. This kind of orbital

transfer includes a increase in the semimajor axis, a change in eccentricity, and an

otherwise infeasible jump in inclination, all of which take a significant amount of

fuel in a two body case, accomplished in the Jovian N-body case simply through

the perturbational pull from the smaller secondaries and unique initial conditions. It

doesn’t take a lot of imagination to see the various ways in which this kind of orbital

transfer capability would be invaluable for any mission design.

4.2 Halo Orbits and Manifolds

The goal of this section is to look at and analyze the various methods for calcu-

lating and propagating halo orbits in the CRNBP. It also introduces one possible

way of maintaining those halos. There are a number of methods for approximating

halo orbits in a three body system. One of the more famous methods was developed

by Richardson?? in 1978. His third order approximation to halo orbits around the
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collinear Lagrange points in a 3 body system is simple enough to implement and

can be used as a basis for higher order approximations, such as those outlined by

Howell??. Both of these techniques are successfully implemented in the N-body sys-

tem, but each solution is only valid for one geometric configuration of the secondaries

and will quickly diverge when propagated with CRNBP dynamics. To solve this,

instead of using Howell’s method of converging on halo orbits from Richardson’s ap-

proximations in 3 body systems, a simple shooting method optimization is employed

with Matlab’s fmincon function. The method involves picking a starting point on

the x-axis depending on whether the halo was in a northern or southern family, and

propagating a body forward to the next x-axis crossing. Since halo orbits cross the

x-axis with only velocity in the y-direction by definition, the cost function of the op-

timization is a sum of the x and z velocities at the axis crossing. For most cases, the

initial x position from the third order approximation is fixed and the initial z position

and y velocity are subject to change. This method turns out to be very effective

though it doesnt entirely solve the problem. Despite the fact that these halos are

being approximated with CRNBP dynamics, the constantly changing positions of the

secondaries make it impossible for these approximations to find halo orbits that are

stable for more than a few revolutions.

The question then becomes: Is halo orbiting possible at all in systems where

there are more than 3 bodies? An entire thesis could be written on the possible

ways of optimally maintaining halo orbiting in this system. For simplicity, a method

of continuously correcting the halo orbit is employed whereby a small impulse burn

is performed each half orbit so that the next half orbit has the properties of halo

orbits used in the optimization scheme described in the previous paragraph. While it

doesn’t consistently maintain the original halo orbit, this technique does use less 4v

than attempting to force the same halo over and over. Largely, this method proves

successful, if not pragmatic on a mission level, and it opens the door to a potential
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study on the possibility of more and less stable regions in families of halo orbits.

The first example of this method of corrected halo-orbiting is both generic com-

pared to the other solutions, and, because of this, informative. The amount of 4v

required to maintain halo orbiting is on the order of 5m
s

per correction initially, av-

eraging out to approximately 2m
s

after 20 or so orbits. The results for the required

change in velocity are summarized in Fig. 4.9. It is also interesting to note that

the change in each successive halo is less and less as the number of orbits progresses.

Figure 4.8 shows a tendency of the halo to correct to a specific region instead of

staying near its original position. Initially, this phenomenon was much more exag-

Figure 4.8: Corrected quasi-halo orbiting

gerated, with the halo bouncing up and down between corrections, so each guess for

the direction of each correction was modified so that it was in the opposite direction

as the previous correction. The thought was that this would keep the orbits from

rapidly diverging by forcing the optimization scheme into solving for solutions that

counteracted one another instead of building on each other. This technique works for

most scenarios, and is used for all of the figures shown. The appearance of convergent

tendencies from this technique was unexpected.
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Figure 4.9: 4v required to correct the Halo

As Figures 4.10 and 4.11 show, trying to force each half orbit to correct in the

opposite direction of the previous correction can manifest with the appearance of

stable set of halos while having erratic changes in the direction of the corrections.

The graph on the right in Fig. 4.11 gives the 4v for each correction by the direction

of the burn. The burns seem exaggerated and wobble quite a lot, despite the fact

Figure 4.10: Corrected quasi-halo orbiting with wobbling

that the orbit appears to stabilize with an average correction 4v of around 2 or 3m
s

.
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Figure 4.11: 4v for the wobbling halo

It’s unclear whether this is indicative of a poorly approximated halo, or a poorly

designed method of maintaining a halo in the system. It is possible that there are a

large number of different solutions for each half-orbit approximation and the method

by which one solution is favored over another causes the lifetime of the burns to

be heavily dependent on the direction of first burn. The burns represented in figure

4.11, for example, start off with a relatively large burn in the z-direction and maintain

burns with a dominant z-direction throughout the 100 orbit cycle, while those shown

in figure 4.13 begin with large, erratic burns mostly in the x-direction, somewhat in

the z-direction, and not at all in the y-direction, and continue this behavior for the

entire simulation. This behavior, however, is not consistent throughout test cases,

and does not allow for definitive conclusions on whether or not the trends of these

halos is due to the methodology by which the direction of the corrections is found

or if it is simply due to the dynamics of the system. Another interesting trend of

the halo in figure 4.12, besides its consistently erratic corrections, is the instability

of the halo itself. Although other test cases seem to want to come to a certain halo

or some small set of halos that are similar to one another, this halo seems to move

through a larger range, oscillating back and forth for the time of the simulation. It

is likely that this orbit will eventually completely diverge from its initial halo family,

but more tests would be required to confirm this.

A great example of a halo that eventually diverges is given in the next figure,

Figure 4.14. Despite the method for correcting each halo orbit, this halo was even-
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Figure 4.12: Unstable corrected quasi-halo orbiting

Figure 4.13: 4v for the unstable halo

tually flung out of the region where halo orbiting would be possible at all. Due to

the repeated success of avoiding this scenario, it is safe to say that this divergence is

most likely due to the inherently unstable nature of the CRNBP system. For what-

ever reason, in this example, the perturbations from the extra bodies in the system

worked to pull the body away from its family. It is possible that there are points in

the halo orbit that are more unstable than others, points where small perturbations

can cause a satellite to diverge more easily than doing so at other points in the orbit,

and this orbit just happens to reach one of those points at an inconvenient time. It

is also possible that this is a coincidence of the geometry of the planets, but this is

unlikely since all of the examples given in this section have the same starting planet

geometry throughout their propagation. The divergence of this orbit is also very
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apparent in the plot of the 4v, where the required change in velocity jumps up an

order of magnitude near the end of the simulation.

Figure 4.14: Divergent corrected quasi-halo orbiting

Figure 4.15: 4v for the divergent halo

The divergence of this orbit seems more coincidental than anything. Some orbits,

such as figure 4.16, stay in almost the exact same place that they started and require
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almost no correction to maintain, and some, such as figure 4.18, converge with a

similar dramatic flare as the divergence of the example in figure 4.14.

Figure 4.16: Highly stable corrected quasi-halo orbiting

Figure 4.17: 4v for the stable halo

The more profound conclusions of this quick look at halo orbits in the CRNBP are

still unclear. The apparently sporadic divergence or convergence of certain halos
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Figure 4.18: Convergent corrected quasi-halo orbiting

Figure 4.19: 4v for the convergent halo

could be due to the method by which the halos are maintained or it could be a side

effect of the N body perturbations. If the latter is the case, there is a possibility that

there exists smaller sub-families of halo orbits in N body systems that are more or

less stable over time. Either way, there is undoubtedly a better way to correct these

halos, whether that is with less frequent burns, with more intelligent burns, or with

continuous burns, as with electric propulsion. The potential for any or all of these is

exciting.

Halo orbits, however, are just the first step in planning complex transfers in the

CRNBP. Once some kind of halo orbit is determined, the next step is to produce

manifolds from that halo, from manifolds, low energy trajectories, and from low

energy trajectories, highways. The process for producing manifolds in the CR3BP is

well understood and easy enough to implement. Even Io, which is very close relative
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to Jupiter’s other moons and is much smaller than Jupiter in terms of mass, is capable

of producing stable halo orbits, and stable and unstable manifolds when analyzed with

the CR3BP.

Figure 4.20: Manifolds propagated with 3 body dynamics from halos de-
veloped with 3 body dynamics

In all of the following figures (and the figures throughout the rest of this paper),

the red lines represent the unstable manifolds, the green lines represent the stable

manifolds, the solid blue line represents the predicted or desired halo orbit, and the

dotted blue line represents what happens when the approximated halo is propagated

forward in whatever dynamics are being used. For example, the halos in Fig. 4.20

were created and propagated with CR3BP dynamics, and those in the figures below

were propagated with N body dynamics. As such, the propagation in the former

shows no divergence from the predicted halo, but the latter cases diverge quickly and

noticeably

Manifolds made from Richardson halo approximations behave erratically when

propagated with CRNBP dynamics. The reasons for this should be mostly obvious.

The perturbations from the other secondaries pulls the trajectile paths of a manifold in

ways that are inconsistent with the properties of invariant manifolds in the three body
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system. Also, assuming the perturbation can be applied to the halo in the direction of

the Jacobian at the associated Lagrange point, the technique for perturbing halos to

create manifolds, is doubly false in the N body system. First, there is no well defined

Lagrange point in the CRNBP, so even the halo is modeled to orbit around a unstable

location, not just with different dynamics. Second, the Jacobian of the N body system

is not the same as that of the 3 body system, meaning that the perturbations applied

to the states are not applied in the correct direction, just an approximation of the

correct direction. Take, for example, the Jupiter-Ganymede manifolds shown in Fig.

4.21. The halo used as the basis for these manifolds was developed in a 3 body system,

placed into the N body system and the propagated The paths of the manifolds are

wild and unpredictable, some paths lead into the planet, others diverge and head in

the opposite direction as would be expect. Even the halo orbit itself diverges after

a single orbit. The problems for manifolds produced around smaller secondaries are

Figure 4.21: Manifolds propagated with N body dynamics from a halo
developed with 3 body dynamics

even more disconcerting These manifolds immediately diverge from their expected

trajectories and either fly away from the planet or careen into it. There are a whole

host of possible reasons for this strange behavior - the most probable being that the

halos shown and used to create the manifolds shown (Fig. 4.22 and Fig. 4.23) where
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not created in the same synodic frame as the one they were propagated forward in.

Solving this would require translating the coordinates and equations of motion into

a different rotational frame. The easiest way to do this would be to modify the N

body system currently scaled to Ganymede and rescale it to the smaller secondaries.

Once this was done, the results would have to be translated back into the Ganymede

synodic frame. This is a non-trivial task and while it would be very interesting

Figure 4.22: Manifolds propagated with N body dynamics from halos de-
veloped with 3 body dynamics near Callisto

and informative, it is not necessary for this thesis. It is likely that, since halos and

manifolds can be produced around the smaller secondaries as shown above, that it

would be possible to do this translation for the other moons as well. Instead, effort

was focused on solving the issues that arose when 3 body manifolds around Ganymede

were propagated with N body dynamics. If these problems could be solved, it is highly

likely that the same process could then be applied to the other moons. To counteract

these problems, halo orbits are instead approximated with N body dynamics. This

not only makes the initial halo more stable in the system, it also means that the halo

will be closer to orbiting its associated pseudo-Lagrange point. The problem of the

Jacobian from the 3 body system applying perturbations in the wrong direction is

avoided by simply decreasing the size of the initial perturbation. Since the Jacobian
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Figure 4.23: Manifolds propagated with N body dynamics from halos de-
veloped with 3 body dynamics near Europa and Io

of the N body system is the Jacobian of the 3 body system plus small perturbational

terms from the extra secondaries, if the initial perturbation from the base halo is small

enough, the pull from the indirect effect is reduced accordingly. Modifying the halos

and manifolds in this manner proved successful, the results are shown in Fig. 4.24.

The resulting manifolds are much cleaner and much more reminiscent of manifolds

Figure 4.24: Manifolds propagated with N body dynamics from a halo
developed with N body dynamics

from the CR3BP. There manifolds are not invariant, and it is likely that invariance is
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impossible with N bodies without correction or very unique conditions. Despite this,

these manifolds are almost identical in appearance to invariant manifolds from the 3

body system and can be used in similar ways such as the construction of low energy

trajectories.

4.3 Low Energy Transfers and the Possibility of Highways

This section deals with what was originally the inspiration for this thesis and what

is perhaps the most interesting result of the analysis. Low energy trajectories exploit

the unique dynamics of the CR3BP to make large orbital transfers with relatively

little fuel. By utilizing the fact that manifolds will brisk the surface of the secondary

body, manifolds from Sun-Planet interactions can be used to transfer to or from a

planet’s surface, e.g. to its moon(s). In the Jovian system, one could imagine how a

Sun-Jupiter L1 manifold could be used to transfer to any of Jupiter’s moons or, more

precisely, any Halo orbit around any of Jupiter’s moons. The idea behind ”highways”

is to find a series of these connections between manifolds so that a satellite could

travel from halo to halo with almost no 4v. The properties of manifolds suggest

that, if such manifold trajectories do exist, there must be similar trajectories in the

opposite direction, meaning that there are paths on which continuous travel over huge

distances and back is possible without much fuel. This section attempts to address

the possibility of the existence of these paths.

The first step in solving for low energy trajectories is to set a up a nominal Sun-

Jupiter halo and it’s associated manifolds. As shown in 4.25, both stable and unstable

manifolds pass very close to the planet, and certainly pass within its direct sphere

of influence. As is the case with figures in the previous section, the green manifolds

represent stable manifolds, manifolds that converge onto a given halo, and red are

unstable manifolds, manifolds that diverge from a given halo. The image on the left of
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the figure highlights relevant trajectories and the image on the right removes all tra-

jectories that do not immediately pass close enough to Jupiter.”Close enough” means

closer than the average distance of Callisto from Jupiter, which is chosen simply due

to that fact that the manifolds that come from Jupiter-Ganymede halos do not extend

pass this orbit. Once this range of trajectories from the Sun-Jupiter (S-J) halo has

Figure 4.25: Low Energy Transfer into the Jovian System

been established, creating a set of manifolds for desired destination halo in the Jovian

system can be constructed with similar size properties. Figure 4.26 zooms in on the

first set and shows the nominal intersection of these manifold sets which then can be

used to narrow down the possible trajectories even further. Mathematically speaking,

there are an infinite number of possible solutions of trajectories that will travel along

these manifolds from the S-J halo to the Jupiter-Ganymede (J-G) halo – irrespective

of the initial geometric distribution of the Jovian moons due to the relatively small

perturbations that the moons cause on the general shape of manifolds – but the num-

ber of functionally accessible trajectories is more limited. Because of this, the best

looking trajectory is chosen as a starting point and then a simple optimization scheme

can collapse on the appropriate trajectory that, literally, closes the loop. Instances

where the initial and final halos have different z-excursions, have different phases, or

belong to different classes were ignored for simplicity, making a solution for one par-

ticular instance relatively easy to find. The resulting trajectory is shown in Figures
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4.27 and 4.28. Assuming that the satellite starts on S-J halo, the satellite would first

Figure 4.26: Low Energy Transfer into the Jovian System (zoom)

diverge along the unstable manifold, flying towards the planet. Once it reaches the

intersection of the stable manifold from the J-G manifold, it would perform a burn

to slow itself down to the proper speed, and then it would continue along the stable

manifold until it reached the given J-G halo. This process is represented by the solid

red and green lines in the figures below. If the fuel consumption of this burn is low

enough, it would be feasible to make the same return trip along the corresponding

mirrored manifold trajectories. This trajectory is given in the figures as a dotted

line. It is important to note that this kind of trajectory will not work with systems

that are rotating the same direction, e.g if the moons of Jupiter moved in a prograde

fashion, this transfer would be much more difficult. This kind of transfer is also much

more difficult when the two systems in question are not co-planar with one another,

though this is less important due to the fact that the dynamics of these systems cause
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Figure 4.27: Transfer from Sun-Jupiter L1 Halo to Jupiter-Ganymede L2
Halo and back

regular sinusoidal oscillation through the x-y plane. It just so happens, however, that

all of the Galilean moons are in retrograde, lowly inclined orbitransferred trajectories

similar to the one shown potentially feasible for a mission. It is also important to note

Figure 4.28: Transfer from Sun-Jupiter L1 Halo to Jupiter-Ganymede L2
Halo and back (zoom)

that the trajectory shown would not be mission feasible itself without a large amount
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of fuel (over 1 km
s

), it is simply a demonstration of the potential for these trajectories.

There are many techniques for optimizing transfers and any number could be em-

ployed to try and make this trajectory more feasible. The possibility of this one orbit

is relatively unimportant. It is important to recognize that these trajectories could

be utilized in complex and interesting ways. Since it is only a question of which of

the N bodies should be transfered to, and since it has been shown that manifolds can

be used to transfer between L1 and L2 points around a body, one can easily imagine

a string of different manifold connections going from the Sun-Jupiter trajectories to

Jupiter-Callisto trajectories to Jupiter-Ganymede trajectories and so on. Perhaps if

combined with aerocapture maneuvers or other similar flyby techniques, the ideas

could eventually be pushed to a realistic framework.
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Chapter 5

FUTURE WORK

The analysis done here opens up the possibility of a plethora of future projects.

The first task that needs to be approached deals with the numerical accuracy of

this method, the ability of this method to accurately propagate states in applicable

systems, not just its ability to predict trends, and the sensitivity of this system to

different geometries, mass ratios, and perturbations, such as that caused by the pull

of the sun. Analyzing these problems would push this system towards (or away

from) more practical applications. The effects of the mass ratio on the validity of

the assumptions of the CRNBP is only discussed enough to prove the assumptions

for the Jovian system, but it is also important to understand more generally when

these assumptions break down. There is also a possibility that unique geometric

configurations could lead to unique energy contours, trajectories, and transfers. It

will also be important to examine the perturbations caused by the eccentricity of

orbits. A lot of work has been done on this problem for the CR3BP and it seems that

this perturbation is one of the largest sources of error. It is probable that this is also

the case for the CRNBP and needs to be examined thoroughly.

Other projects suggested by this paper include modeling other planets. The results

of this paper are limited to the Jovian system exclusively. Both the solar system and

the Saturnian system have similar mass properties as the Jovian system, making

them viable candidates for this kind of analysis. Saturn would be difficult due to the

fact that it would be necessary to include the perturbations from the planet’s rings.

The solar system could be analyzed to look at the possibility of using these models

for interplanetary transfers, with low energy trajectories as their basis. Surprisingly,

Uranus also fits nicely under the assumptions required for the CRNBP equations.
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With the interest in creating orbiters around the system rising in recent years, these

equations could be the first step in higher level mission analysis.

The results from the derivation of the Jacobi constant are consistent with the 3

body system, but they are not examine at length in this paper. It would be worthwhile

to examine the Jacobi energy of different systems as well as looking the motion and

trends of the energy contours as the different moons in the system process. Another

potential study could look at the variance and stability of the points of minimum

acceleration in the system for different planetary geometries and under the effect of

perturbations.

This thesis also opened up the possibility of a new examination of halo orbits,

manifolds, and low energy trajectories that was only brisked. It might be possible to

find a lower order solution to periodic orbits in the CRNBP, similar to the solution

found by Richardson for halo orbits in the three body problem, and it might be pos-

sible to find a way of converging on more accurate solutions using the state transition

matrix, similar to the solution developed by Howell. The solution to correct halo

orbits in the CRNBP was a simplistic solution that did not account for a number of

different and applicable trajectory correction methods. Higher fidelity correction op-

timization, and integrated thruster capabilities and control would both be interesting

studies with practical results. Similarly, the low energy transfer demonstrated was

simple and did not have any kind of optimization. To make more concrete conclusions

about the possibility and mission feasibility of these trajectories, there needs to be a

more inclusive look at how these trajectories could be accomplished.
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Chapter 6

CONCLUSION

This thesis is a brief look at a new solution to a problem that has been approached

in many different ways in the past - the N body problem. By focusing on planetary

systems, satellite dynamics can be modeled in a fashion similar to the Circular Re-

stricted Three Body Problem with the Circular Restricted N Body Problem. It was

found that this new formulation of the dynamics can then utilize the tools created

from all the research into the CR3BP to reassess the possibility of different complex

trajectories in systems where there are more than just two large gravitational bodies

affecting the dynamics, namely periodic and semi-periodic orbits, halo orbits, and

low energy transfers It was also found that not only system dynamics, but models of

the Jacobi constant could also be formulated similarly to the CR3BP.

Validating the authenticity of these new sets of equations, the CRNBP dynamics

are applied to a satellite in the Earth-Moon system and compared to a simulation

of the CR3BP under identical circumstances. This test verified the dynamics of the

CRNBP, showing that the two systems created almost identical results with relatively

small deviations over time and with essentially identical path trends. In the Jovian

system, it was found the mass ratio required to validated the assumptions required

to integrate the equations of motion was around .1

This demonstration is simplistic and, in the end, merely academic in its current

state, but it opens up the possibility of considering the trajectories of satellites in

systems with N major gravitational bodies without forcing highly idealized dynamics.

Even with the constant influence of multiple bodies, it seems that a body’s dynamics

are relatively unchanged and trend in very similar ways to more idealized cases like

the CR3BP. The equations and methods here are another step towards a better
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understanding of N body dynamics and give a cursory glance at the possibility of

results of applying them to a real world system. This is just a start, but a door has

been opened to a new way of looking at an age old problem.
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