813 research outputs found
The Fine-Structure of the Net-Circular Polarization in a Sunspot Penumbra
We present novel evidence for a fine structure observed in the net-circular
polarization (NCP) of a sunspot penumbra based on spectropolarimetric
measurements utilizing the Zeeman sensitive FeI 630.2 nm line. For the first
time we detect a filamentary organized fine structure of the NCP on spatial
scales that are similar to the inhomogeneities found in the penumbral flow
field. We also observe an additional property of the visible NCP, a
zero-crossing of the NCP in the outer parts of the center-side penumbra, which
has not been recognized before. In order to interprete the observations we
solve the radiative transfer equations for polarized light in a model penumbra
with embedded magnetic flux tubes. We demonstrate that the observed
zero-crossing of the NCP can be explained by an increased magnetic field
strength inside magnetic flux tubes in the outer penumbra combined with a
decreased magnetic field strength in the background field. Our results strongly
support the concept of the uncombed penumbra
Preregistration house officers in general practice: review of evidence
OBJECTIVES: To examine the strengths and weaknesses
of the national and local schemes for preregistration
house officers to spend four months in general
practice, to identify any added value from such
placements, and to examine the impact on career
choices.
DESIGN: Review of all studies that reported on
placements of preregistration house officers in
general practice.
SETTING: 19 accounts of preregistration house officers’
experience in general practice, ranging from single
case reports to a national evaluation study, in a variety
of locations in Scotland and England.
PARTICIPANTS: Views of 180 preregistration house
officers, 45 general practitioner trainers, and 105
consultant trainers.
MAIN OUTCOME MEASURES: Main findings or themes
weighted according to number of studies reporting
them and weighted for sample size.
RESULTS: The studies were unanimous about the
educational benefits of the placements. The
additional learning included communication skills,
social and psychological factors in illness, patient
centred consultations, broadening of knowledge base,
and dealing with uncertainty about diagnosis and
referral.
CONCLUSIONS: Despite the reported benefits and
recommendations of the scheme, it is not expanding.
General practitioner trainers reported additional
supervision that was unremunerated. The reforms of
the senior house officer grade may resolve this
problem by offering the placements to senior house
officers, who require less supervision
Spatial Relationship between Solar Flares and Coronal Mass Ejections
We report on the spatial relationship between solar flares and coronal mass
ejections (CMEs) observed during 1996-2005 inclusive. We identified 496
flare-CME pairs considering limb flares (distance from central meridian > 45
deg) with soft X-ray flare size > C3 level. The CMEs were detected by the Large
Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric
Observatory (SOHO). We investigated the flare positions with respect to the CME
span for the events with X-class, M-class, and C-class flares separately. It is
found that the most frequent flare site is at the center of the CME span for
all the three classes, but that frequency is different for the different
classes. Many X-class flares often lie at the center of the associated CME,
while C-class flares widely spread to the outside of the CME span. The former
is different from previous studies, which concluded that no preferred flare
site exists. We compared our result with the previous studies and conclude that
the long-term LASCO observation enabled us to obtain the detailed spatial
relation between flares and CMEs. Our finding calls for a closer flare-CME
relationship and supports eruption models typified by the CSHKP magnetic
reconnection model.Comment: 7 pages; 4 figures; Accepted by the Astrophysical Journa
A new look at a polar crown cavity as observed by SDO/AIA
Context.
The Solar Dynamics Observatory (SDO) was launched in February 2010 and is now providing an unprecedented view of the solar activity at high spatial resolution and high cadence covering a broad range of temperature layers of the atmosphere.
Aims.
We aim at defining the structure of a polar crown cavity and describing its evolution during the erupting process.
Methods.
We use the high-cadence time series of SDO/AIA observations at 304 Å (50 000 K) and 171 Å (0.6 MK) to determine the structure of the polar crown cavity and its associated plasma, as well as the evolution of the cavity during the different phases of the eruption. We report on the observations recorded on 13 June 2010 located on the north-west limb.
Results.
We observe coronal plasma shaped by magnetic field lines with a negative curvature (U-shape) sitting at the bottom of a cavity. The cavity is located just above the polar crown filament material. We thus observe the inner part of the cavity above the filament as depicted in the classical three part coronal mass ejection (CME) model composed of a filament, a cavity, and a CME front. The filament (in this case a polar crown filament) is part of the cavity, and it makes a continuous structuring from the filament to the CME front depicted by concentric ellipses (in a 2D cartoon).
Conclusions.
We propose to define a polar crown cavity as a density depletion sitting above denser polar crown filament plasma drained down the cavity by gravity. As part of the polar crown filament, plasma at different temperatures (ranging from 50 000 K to 0.6 MK) is observed at the same location on the cavity dips and sustained by a competition between the gravity and the curvature of magnetic field lines. The eruption of the polar crown cavity as a solid body can be decomposed into two phases: a slow rise at a speed of 0.6 km s-1 and an acceleration phase at a mean speed of 25 km s-1
Self-Consistent MHD Modeling of a Coronal Mass Ejection, Coronal Dimming, and a Giant Cusp-Shaped Arcade Formation
We performed magnetohydrodynamic simulation of coronal mass ejections (CMEs)
and associated giant arcade formations, and the results suggested new
interpretations of observations of CMEs. We performed two cases of the
simulation: with and without heat conduction. Comparing between the results of
the two cases, we found that reconnection rate in the conductive case is a
little higher than that in the adiabatic case and the temperature of the loop
top is consistent with the theoretical value predicted by the Yokoyama-Shibata
scaling law. The dynamical properties such as velocity and magnetic fields are
similar in the two cases, whereas thermal properties such as temperature and
density are very different.In both cases, slow shocks associated with magnetic
reconnectionpropagate from the reconnection region along the magnetic field
lines around the flux rope, and the shock fronts form spiral patterns. Just
outside the slow shocks, the plasma density decreased a great deal. The soft
X-ray images synthesized from the numerical results are compared with the soft
X-ray images of a giant arcade observed with the Soft X-ray Telescope aboard
{\it Yohkoh}, it is confirmed that the effect of heat conduction is significant
for the detailed comparison between simulation and observation. The comparison
between synthesized and observed soft X-ray images provides new interpretations
of various features associated with CMEs and giant arcades.Comment: 39 pages, 18 figures. Accepted for publication in the Astrophysical
Journal. The PDF file with high resplution figures can be downloaded from
http://www.kwasan.kyoto-u.ac.jp/~shiota/study/ApJ62426.preprint.pdf
The Relationship of Coronal Mass Ejections to Streamers
We have examined images from the Large Angle Spectroscopic Coronagraph
(LASCO) to study the relationship of Coronal Mass Ejections (CMEs) to coronal
streamers. We wish to test the suggestion (Low 1996) that CMEs arise from flux
ropes embedded in a streamer erupting, thus disrupting the streamer. The data
span a period of two years near sunspot minimum through a period of increased
activity as sunspot numbers increased. We have used LASCO data from the C2
coronagraph which records Thomson scattered white light from coronal electrons
at heights between 1.5 and 6R_sun. Maps of the coronal streamers have been
constructed from LASCO C2 observations at a height of 2.5R_sun at the east and
west limbs. We have superposed the corresponding positions of CMEs observed
with the C2 coronagraph onto the synoptic maps. We identified the different
kinds of signatures CMEs leave on the streamer structure at this height
(2.5R_sun). We find four types of CMEs with respect to their effect on
streamers:
1. CMEs that disrupt the streamer 2. CMEs that have no effect on the
streamer, even though they are related to it. 3. CMEs that create streamer-like
structures 4. CMEs that are latitudinally displaced from the streamer.
This is the most extensive observational study of the relation between CMEs
and streamers to date. Previous studies using SMM data have made the general
statement that CMEs are mostly associated with streamers, and that they
frequently disrupt it. However, we find that approximately 35% of the observed
CMEs bear no relation to the pre-existing streamer, while 46% have no effect on
the observed streamer, even though they appear to be related to it. Our
conclusions thus differ considerably from those of previous studies.Comment: Accepted, Journal of Geophysical Research. 8 figs, better versions at
http://www.science.gmu.edu/~prasads/streamer.htm
Downflows in sunspot umbral dots
We study the velocity field of umbral dots at a resolution of 0.14". Our
analysis is based on full Stokes spectropolarimetric measurements of a pore
taken with the CRISP instrument at the Swedish 1-m Solar Telescope. We
determine the flow velocity at different heights in the photosphere from a
bisector analysis of the Fe I 630 nm lines. In addtion, we use the observed
Stokes Q, U, and V profiles to characterize the magnetic properties of these
structures. We find that most umbral dots are associated with strong upflows in
deep photospheric layers. Some of them also show concentrated patches of
downflows at their edges, with sizes of about 0.25", velocities of up to 1000
m/s, and enhanced net circular polarization signals. The downflows evolve
rapidly and have lifetimes of only a few minutes. These results appear to
validate numerical models of magnetoconvection in the presence of strong
magnetic fields.Comment: Final published version. For best quality figures, please download
the PS versio
Ferritin and Iron Studies in Anaemia and Chronic Disease
Anaemia is a condition in which the number of red cells necessary to meet the body's physiological requirements is insufficient. Iron deficiency anaemia (IDA) and the anaemia of chronic disease (ACD) are the two most common causes of anaemia worldwide; iron homeostasis plays a pivotal role in the pathogenesis of both diseases. An understanding of how iron studies can be used to distinguish between these diseases is therefore essential, not only for diagnosis but also in guiding management. This review will primarily focus on IDA and ACD; however iron overload in anaemia will also be briefly discussed
Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?
Coronal Mass Ejections continuously drag closed magnetic field lines away
from the Sun, adding new flux to the interplanetary magnetic field (IMF). We
propose that the outward-moving blobs that have been observed in helmet
streamers are evidence of ongoing, small-scale reconnection in streamer current
sheets, which may play an important role in the prevention of an indefinite
buildup of the IMF. Reconnection between two open field lines from both sides
of a streamer current sheet creates a new closed field line, which becomes part
of the helmet, and a disconnected field line, which moves outward. The blobs
are formed by plasma from the streamer that is swept up in the trough of the
outward moving field line. We show that this mechanism is supported by
observations from SOHO/LASCO. Additionally, we propose a thorough statistical
study to quantify the contribution of blob formation to the reduction of the
IMF, and indicate how this mechanism may be verified by observations with
SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters;
uses AASTe
Anomalous circular polarization profiles in the He I 1083.0 nm multiplet from solar spicules
We report Stokes vector observations of solar spicules and a prominence in
the He I 1083 nm multiplet carried out with the Tenerife Infrared Polarimeter.
The observations show linear polarization profiles that are produced by
scattering processes in the presence of a magnetic field. After a careful data
reduction, we demonstrate the existence of extremely asymmetric Stokes V
profiles in the spicular material that we are able to model with two magnetic
components along the line of sight, and under the presence of atomic
orientation in the energy levels that give rise to the multiplet. We discuss
some possible scenarios that can generate the atomic orientation in spicules.
We stress the importance of spectropolarimetric observations across the limb to
distinguish such signals from observational artifacts.Comment: accepted for publication in Ap
- …
