1,883 research outputs found

    A method to construct refracting profiles

    Full text link
    We propose an original method for determining suitable refracting profiles between two media to solve two related problems: to produce a given wave front from a single point source after refraction at the refracting profile, and to focus a given wave front in a fixed point. These profiles are obtained as envelopes of specific families of Cartesian ovals. We study the singularities of these profiles and give a method to construct them from the data of the associated caustic.Comment: 12 pages, 5 figure

    Petrogenesis of Eocene oceanic basalts from the West Philippine Basin and Oligocene arc volcanics from the Palau-Kyushu Ridge drilled at 20°N, 135°E (Western Pacific Ocean).

    Get PDF
    The West Philippine Basin (WPB) is a back-arc basin that opened within the Philippine Sea Plate (PSP) between the current position of the Palau-Kyushu Ridge (PKR) and the margin of East Asia. Spreading occurred at the Central Basin Fault (CBF) mainly from 54 until 30 Ma. The PKR was active since ~ 48 to 35 Ma constituting a single volcanic arc with the Izu-Bonin-Mariana (IBM) Arc. At ~ 42 Ma ago spreading rate and direction changed from NE-SW to NS, stopping at ~ 30 Ma. A late phase of spreading and volcanism took place between 30 and 26 Ma. ODP Leg 195 Site 1201 is located in the WPB, ~ 100 km west of the PKR, on 49 Ma crust formed by NE-SW spreading at the CBF. From ~ 35 to 30 Ma, pelagic sedimentation at Site 1201 was followed by turbidite sedimentation, fed mostly by arc-derived volcanic clasts. The geochemical and isotopic features of Site 1201 basement rocks, which represent Eocene WPB oceanic crust, compared with those of Site 1201 volcanics from the turbidite sequence, representing products of the early Mariana Arc (PKR), provide some insights into the early history of the IBM subduction factory. The WPB basement is made up of aphyric to porphyritic basalts with altered olivine, and preserved plagioclase, clinopyroxene and opaques. The PKR volcanics are porphyritic basalts and andesites with plagioclase, clino- and orthopyroxene, hornblende, alkali feldspar and opaques. Variable textures, and degree of alteration suggesting zeolite facies metamorphic grade, characterize both groups of rocks. The mineralogical and geochemical characteristics of the investigated Site 1201 PKR volcanics highlight their calc-alkaline affinity. This feature is at variance with both other PKR rocks, having mostly boninitic and arc tholeiitic affinity, and WPB basement basalt, having tholeiitic affinity, with some characters transitional to arc-like, as expected for a back-arc basin. New Sr and Nd isotope data, coupled with published Sr, Nd, Pb and Hf isotope data (Savov et al., 2006), highlight the Indian Ocean MORB-like character of Site 1201 basement basalts. This suggests that WPB volcanism tapped an upper mantle domain distinct from that underlying the Pacific Plate. The isotopic features of Site 1201 PKR volcanics are more enriched relative to those of basement basalts reflecting higher amounts of subduction-derived component(s) in the source of arc magmas. Th-Nb relationships and isotope geochemistry of the WPB basement and overlaying arc volcanics suggest addition of subducted sediment mostly as siliceous melts, to the mantle source of the arc volcanics. In that respect, Site 1201 PKR volcanics resemble calc-alkaline volcanics of the currently active Mariana Arc. In addition, the calc-alkaline affinity, unradiogenic neodymium, and inferred Middle Oligocene age of PKR volcanics, suggest they might represent an evolved stage of arc volcanism at Palau-Kyushu Ridge, perhaps shortly before the end of its activity

    Characterization of soil organic matter in aggregates and size-density fractions by solid state C-13 CPMAS NMR spectroscopy.

    Get PDF
    Understanding the changes in soil organic matter (SOM) composition during aggregate formation is crucial to explain the stabilization of SOM in aggregates. The objectives of this study were to investigate (i) the composition of SOM associated with different aggregates and size-density fractions and (ii) the role of selective preservation in determining the composition of organic matter in aggregate and size-density fractions. Surface soil samples were collected from an Alfisol on the Northern Tablelands of NSW, Australia with contrasting land uses native pasture, crop-pasture rotation and woodland. Solid state 13C cross-polarization and magic angle spinning (CPMAS) Nuclear Magnetic Resonance (NMR) spectroscopy was used to determine the SOM composition in macroaggregates (250-2000 µm), microaggregates (53-250 µm), and <53 µm fraction. The chemical composition of light fraction (LF), coarse particulate organic matter (cPOM), fine particulate organic matter (fPOM) and mineral associated soil organic matter (mSOM) were also determined. The major constituent of SOM of aggregate size fractions was O-alkyl carbon, which represented 44-57% of the total signal acquired, whereas alkyl carbon contributed 16-27%. There was a progressive increase in alkyl carbon content with decrease in aggregate size. Results suggest that SOM associated with <53 µm fraction was at a more advanced stage of decomposition than that of macroaggregates and microaggregates. The LF and cPOM were dominated by O-alkyl carbon while alkyl carbon content was high in fPOM and mSOM. Interestingly, the relative change in O-alkyl, alkyl and aromatic carbon between aggregates and SOM fractions revealed that microbial synthesis and decomposition of organic matter along with selective preservation of alkyl and aromatic carbon plays a significant role in determining the composition of organic matter in aggregates

    Role of Quantum Confinement in Luminescence Efficiency of Group IV Nanostructures

    Full text link
    Experimental results obtained previously for the photoluminescence efficiency (PLeff_{eff}) of Ge quantum dots (QDs) are theoretically studied. A log\log-log\log plot of PLeff_{eff} versus QD diameter (DD) resulted in an identical slope for each Ge QD sample only when EG(D2+D)1E_{G}\sim (D^2+D)^{-1}. We identified that above DD\approx 6.2 nm: EGD1E_{G}\sim D^{-1} due to a changing effective mass (EM), while below DD\approx 4.6 nm: EGD2E_{G}\sim D^{-2} due to electron/ hole confinement. We propose that as the QD size is initially reduced, the EM is reduced, which increases the Bohr radius and interface scattering until eventually pure quantum confinement effects dominate at small DD

    Spin relaxation in quantum dots with random spin-orbit coupling

    Full text link
    We investigate the longitudinal spin relaxation arising due to spin-flip transitions accompanied by phonon emission in quantum dots where the strength of the Rashba spin-orbit coupling is a random function of the lateral (in-plane) coordinate on the spatial nanoscale. In this case the Rashba contribution to the spin-orbit coupling cannot be completely removed by applying a uniform external bias across the quantum dot plane. Due to the remnant random contribution, the spin relaxation rate cannot be decreased by more than two orders of magnitude even when the external bias fully compensates the regular part of the spin-orbit coupling.Comment: 13 pages, 4 figure

    Confronting a solar irradiance reconstruction with solar and stellar data

    Get PDF
    Context. A recent paper by Shapiro and colleagues (2011, A&A, 529, A67) reconstructs spectral and total irradiance variations of the Sun during the holocene. Aims. In this note, we comment on why their methodology leads to large (0.5%) variations in the solar TSI on century-long time scales, in stark contrast to other reconstructions which have ≲ 0.1% variations. Methods. We examine the amplitude of the irradiance variations from the point of view of both solar and stellar data. Results. Shapiro et al.’s large amplitudes arise from differences between the irradiances computed from models A and C of Fontenla and colleagues, and from their explicit assumption that the radiances of the quiet Sun vary with the cosmic ray modulation potential. We suggest that the upper photosphere, as given by model A, is too cool, and discuss relative contributions of local vs. global dynamos to the magnetism and irradiance of the quiet Sun. We compare the slow (\u3e22 yr) components of the irradiance reconstructions with secular changes in stellar photometric data that span 20 years or less, and find that the Sun, if varying with such large amplitudes, would still lie within the distribution of stellar photometric variations measured over a 10−20 year period. However, the stellar time series are individually too short to see if the reconstructed variations will remain consistent with stellar variations when observed for several decades more. Conclusions. By adopting model A, Shapiro et al. have over-estimated quiet-Sun irradiance variations by about a factor of two, based upon a re-analysis of sub-mm data from the James Clerk Maxwell telescope. But both estimates are within bounds set by current stellar data. It is therefore vital to continue accurate photometry of solar-like stars for at least another decade, to reveal secular and cyclic variations on multi-decadal time scales of direct interest to the Sun
    corecore