42,451 research outputs found
Design and development of a motion compensator for the RSRA main rotor control
The RSRA, an experimental helicopter, is equipped with an active isolation system that allows the transmission to move relative to the fuselage. The purpose of the motion compensator is to prevent these motions from introducing unwanted signals to the main rotor control. A motion compensator concept was developed that has six-degree-of-freedom capability. The mechanism was implemented on RSRA and its performance verified by ground and flight tests
Building a model for scoring 20 or more runs in a baseball game
How often can we expect a Major League Baseball team to score at least 20
runs in a single game? Considered a rare event in baseball, the outcome of
scoring at least 20 runs in a game has occurred 224 times during regular season
games since 1901 in the American and National Leagues. Each outcome is modeled
as a Poisson process; the time of occurrence of one of these events does not
affect the next future occurrence. Using various distributions, probabilities
of events are generated, goodness-of-fit tests are conducted, and predictions
of future events are offered. The statistical package R is employed for
analysis.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS301 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Compensating linkage for main rotor control
A compensating linkage for the rotor control system on rotary wing aircraft is described. The main rotor and transmission are isolated from the airframe structure by clastic suspension. The compensating linkage prevents unwanted signal inputs to the rotor control system caused by relative motion of the airframe structure and the main rotor and transmission
Airframe-integrated propulsion system for hypersonic cruise vehicles
Research on a new, hydrogen burning, airbreathing engine concept which offers good potential for efficient hypersonic cruise vehicles is considered. Features of the engine which lead to good performance include; extensive engine-airframe integration, fixed geometry, low cooling, and the control of heat release in the supersonic combustor by mixed-modes of fuel injection from the combustor entrance. The engine concept is described along with results from inlet tests, direct-connect combustor tests, and tests of two subscale boiler-plate research engines presently underway at conditions which simulate flight at Mach 4 and 7
A stacking method to study the gamma-ray emission of source samples based on the co-adding of Fermi LAT count maps
We present a stacking method that makes use of co-added maps of gamma-ray
counts produced from data taken with the Fermi Large Area Telescope. Sources
with low integrated gamma-ray fluxes that are not detected individually may
become detectable when their corresponding count maps are added. The combined
data set is analyzed with a maximum likelihood method taking into account the
contribution from point-like and diffuse background sources. For both simulated
and real data, detection significance and integrated gamma-ray flux are
investigated for different numbers of stacked sources using the public Fermi
Science Tools for analysis and data preparation. The co-adding is done such
that potential source signals add constructively, in contrast to the signals
from background sources, which allows the stacked data to be described with
simply structured models. We show, for different scenarios, that the stacking
method can be used to increase the cumulative significance of a sample of
sources and to characterize the corresponding gamma-ray emission. The method
can, for instance, help to search for gamma-ray emission from galaxy clusters.Comment: accepted for publication in Astronomy & Astrophysics, 10 pages, 12
figure
High-resolution crystal structure of C-Phycocyanin and polarized optical spectra of single crystals
Optimization of a neutrino factory oscillation experiment
We discuss the optimization of a neutrino factory experiment for neutrino
oscillation physics in terms of muon energy, baselines, and oscillation
channels (gold, silver, platinum). In addition, we study the impact and
requirements for detector technology improvements, and we compare the results
to beta beams. We find that the optimized neutrino factory has two baselines,
one at about 3000 to 5000km, the other at about 7500km (``magic'' baseline).
The threshold and energy resolution of the golden channel detector have the
most promising optimization potential. This, in turn, could be used to lower
the muon energy from about 50GeV to about 20GeV. Furthermore, the inclusion of
electron neutrino appearance with charge identification (platinum channel)
could help for large values of \sin^2 2 \theta_{13}. Though tau neutrino
appearance with charge identification (silver channel) helps, in principle, to
resolve degeneracies for intermediate \sin^2 2 \theta_{13}, we find that
alternative strategies may be more feasible in this parameter range. As far as
matter density uncertainties are concerned, we demonstrate that their impact
can be reduced by the combination of different baselines and channels. Finally,
in comparison to beta beams and other alternative technologies, we clearly can
establish a superior performance for a neutrino factory in the case \sin^2 2
\theta_{13} < 0.01.Comment: 51 pages, 25 figures, 6 tables, references corrected, final version
to appear in Phys. Rev.
- …
