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Several biliprotein crystals are composed of oligomeric
aggregates which most probably closely resemble the trimeric
and hexameric discs of native phycobilisomes (1-3). Therefore,
X-ray analysis of these crystals yields not only information
about the monomeric structure, but about the interaction of the
monomers and relative geometry of their chromophores as well.
Particularly, the structure of C-phycocyanin (C-PC) hexamers
from Agmenellum quadruplicatum (2, 4) shows that there is a
multitude of paths for intra-hexameric energy transfer.
Chromophore 84 and P84 of the neighbouring monomer (same
trimer) have the most favourable relative position, whereas (84
- a84 and P155 - P155 seem to represent the main paths for
inter-trimeric energy transfer. Energy transfer across the
interface of hexamers in the phycobilisome rods most probably
proceeds from P84 to P84.

The crystal structure of C-PC from Mastigocladus laminosus has
recently been refined (4). The high resolution (2.1 A) of this
structure allowed an accurate determination of the geometry of
all three chromophores. All chromophores are defined in their
entirety and exhibit wvery similar geometry in their
tetrapyrrole part. The structure of a phycocyanobilin
chromophore resembles a cleaved porphyrin which has been
unfolded by a twist of roughly 180° around the C5-C6 and

C14-C1l5 bonds. Accordingly, the configuration / conformation of
*) present address: Laboratory of Molecular Biology, M.R.C.,
Cambridge CB2 2QH, U.K.
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Fig, 1:
a) Stereoscopic view of chromophore B84, the side-chain of
aspartate P87 and the Ca-backbone (part of helix E).

b) Same model, rotated by approximately 90 degree around the
vertical direction.
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Fig. 2:

a) Stereoscopic view of chromophore B155, the side-chain of
aspartate B39 and the Co-backbone (G-H loop and part of helix
A).

the chromophores is Z-anti, Z-syn, Z-anti (with the exception
of the "configuration" of C14-Cl1l5 of chromophore 155, which is
almost midway between Z and E).

All three chromophores show a common principle of interaction
with the protein. They arch around aspartate residues (087,
B87, PB39), the nitrogen atoms of pyrroles B and C being within
hydrogen-bonding distance to one of the carboxylate oxygens
(Figs. 1 and 2). Most of the propionic side-chains of the
chromophores form salt-bridges with arginine and 1lysine
residues. In view of the local symmetry between the a- and
B-subunit (1), the similarity of the structures of &84 and [84
is not surprising, although it has to be considered that they
occupy quite different positions in the trimeric aggregate. 084
is shielded by the neighbouring monomer, whereas P84 is located

at the inner side of the central channel. It 1is striking,
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however, that also P155 exhibits a very similar geometry,
despite its distinct position in the subunit at the G-H loop.
Moreover, the same chromophore-aspartate interaction is
observed, the interacting aspartate B39 being provided by helix
B (Fig. 2).

The three chromophores of C-PC differ in their spectral
properties (see e.g. ref. 5). To assign the different spectra
to the individual chromophores, polarized optical spectroscopy
on single crystals together with the knowledge of the
chromophore positions and orientations provides a powerful
method.

Polarized absorption and fluorescence spectra of single C-PC
crystals from Mastigocladus laminosus have been recorded (6).
The crystals show dichroism. The position of the absorption
maximum shifts from 612 nm (E parallel to the optical axis c¢)
to 626 nm (E perpendicular to c¢). The polarized absorption
spectra can be simulated well only - using the deconvoluted
solution spectra of the individual chromophores (5) and the
orientations of the chromophores (4) - if the short and long
wavelength component spectra of the P-subunit (Bg and B¢,
respectively) are assigned to chromophores PB155 and P84,
respectively.

The polarization component of the fluorescence from single
crystals is about 2.9 times more intense perpendicular to the
three-fold trimer axis than parallel to it. From the known
inclination of the chromophores towards the trimer axis
intensity ratios of 11.0, 1.6 and 0.25 would be expected, if
one of the chromophores 084, P84 and PB155, respectively, would
fluoresce solely. Fluorescense originating from both
chromophores 84 and B84, however, would yield an intensity
ratio of 3.0, comparing favourable with the observed ratio. It
can be excluded that B155 contributes a substantial part to the
observed fluorescense. This gives further direct evidence that
B155 is the Bs-chromophore. It can be deduced, therefore, that
the net energy flow in the trimers (and hexamers) is directed
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from the peripheral P155 chromophores to the o84 - (84 pair.
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