491 research outputs found

    Incubation of solid state C<sub>60</sub> fullerene under UV irradiation mimicking environmentally relevant conditions

    Get PDF
    Carbon-based nanomaterials, such as C60 fullerenes, are expected to accumulate in soil due to direct release and deposition from the atmosphere. However, little is known about the environmental fate of these nanoparticles which may be susceptible to photochemical and microbial degradation. In the present work, C60 was incubated for a period of 28 days and irradiated with UVA light. Three experiments were carried out where the fullerenes were either spiked onto a glass surface or added to quartz sand or sandy soil samples. At specific time intervals the samples were extracted and analysed by liquid chromatography coupled to UV or high resolution mass spectrometric (HRMS) detection. The fullerenes were degraded in all the treatments and the decay followed a pseudo-first-order rate law. In absence of a solid matrix, the half-life (t1⁄2) of the C60 was 13.1 days, with an overall degradation of 45.1% that was accompanied by the formation of functionalized C60-like structures. Furthermore, mass spectrometric analysis highlighted the presence of a large number of transformation products that were not directly related to the irradiation and presented opened cage and oxidized structures. When C60 was spiked into solid matrices the degradation occurred at a faster rate (t1⁄2 of 4.5 and 0.8 days for quartz sand and sandy soil, respectively). Minor but consistent losses were found in the non-irradiated samples, presumably due to biotic or chemical processes occurring in these samples. The results of this study suggest that light-mediated transformation of the fullerenes will occur in the environment

    A method for the determination of fullerenes in soil and sediment matrices using ultra-high performance liquid chromatography coupled with heated electrospray quadrupole time of flight mass spectrometry

    Get PDF
    The increasing production of fullerenes likely means a release of these chemicals in the environment. Since soils and sediments are expected to act as a sink, analytical tools are needed to assess the presence of fullerenes in these matrices. In the present work, a method was developed for the determination of fullerenes at environmental relevant levels employing Ultra High Performance Liquid Chromatograph coupled with High Resolution Mass Spectrometry (UHPLC-HRMS). Chromatographic separation was achieved with a core–shell biphenyl stationary phase that provided fast analysis with complete baseline separation. Ion Booster Electro Spray Ionization (IB-ESI) resulted in higher ionization efficiency and was much less susceptible to adduct formation in comparison with standard ESI, whereas Quadrupole Time of Flight (QTOF) MS granted high resolution mass spectra used for accurate identification. The Instrumental method limits of detection (ILoD) and quantification (ILoQ) were 6 and 20 fg, respectively, for C60 and 12 and 39 fg, respectively, for C70. Matrix effects related to co-extractants were systematically investigated in soil and sediments extracts through standard addition method (SAM) and monitoring the signal response during the chromatographic run of these samples. Consequently, minor chromatographic modifications were necessary for the analysis of matrices with high organic carbon content. The method limit of detection (MLoD)ranged from 84 pg/kg to 335 pg/kg, whereas limit of quantification (MLoQ) ranged from 279 pg/kg to 1.1 ng/kg. Furthermore, the method was successfully applied for the analysis of functionalized fullerenes (i.e. methanofullerenes). To the best of our knowledge, this is the first analytical method for the analysis of fullerenes in soils and sediments that employ core–shell biphenyl stationary phase as well as IB-ESI-QTOF MS hyphenated with UHPLC

    phyr: Anrpackage for phylogenetic species-distribution modelling in ecological communities

    Get PDF
    Model-based approaches are increasingly popular in ecological studies. A good example of this trend is the use of joint species distribution models to ask questions about ecological communities. However, most current applications of model-based methods do not include phylogenies despite the well-known importance of phylogenetic relationships in shaping species distributions and community composition. In part, this is due to a lack of accessible tools allowing ecologists to fit phylogenetic species distribution models easily. To fill this gap, therpackagephyr(pronounced fire) implements a suite of metrics, comparative methods and mixed models that use phylogenies to understand and predict community composition and other ecological and evolutionary phenomena. Thephyrworkhorse functions are implemented in C++ making all calculations and model estimations fast. phyrcan fit a variety of models such as phylogenetic joint-species distribution models, spatiotemporal-phylogenetic autocorrelation models, and phylogenetic trait-based bipartite network models.phyralso estimates phylogenetically independent trait correlations with measurement error to test for adaptive syndromes and performs fast calculations of common alpha and beta phylogenetic diversity metrics. Allphyrmethods are united under Brownian motion or Ornstein-Uhlenbeck models of evolution, and phylogenetic terms are modelled as phylogenetic covariance matrices. The functions and model formula syntax we propose inphyrprovide an easy-to-use collection of tools that we hope will ignite the use of phylogenies to address a variety of ecological questions

    Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems

    Get PDF
    Although competing species are expected to exhibit compensatory dynamics (negative temporal covariation), empirical work has demonstrated that competitive communities often exhibit synchronous dynamics (positive temporal covariation). This has led to the suggestion that environmental forcing dominates species dynamics; however, synchronous and compensatory dynamics may appear at different length scales and/or at different times, making it challenging to identify their relative importance. We compiled 58 long-term datasets of zooplankton abundance in north-temperate and sub-tropical lakes and used wavelet analysis to quantify general patterns in the times and scales at which synchronous/compensatory dynamics dominated zooplankton communities in different regions and across the entire dataset. Synchronous dynamics were far more prevalent at all scales and times and were ubiquitous at the annual scale. Although we found compensatory dynamics in approximately 14% of all combinations of time period/scale/lake, there were no consistent scales or time periods during which compensatory dynamics were apparent across different regions. Our results suggest that the processes driving compensatory dynamics may be local in their extent, while those generating synchronous dynamics operate at much larger scales. This highlights an important gap in our understanding of the interaction between environmental and biotic forces that structure communities

    Organic contaminants in bio-based fertilizer treated soil:Target and suspect screening approaches

    Get PDF
    Using bio-based fertilizer (BBF) in agricultural soil can reduce the dependency on chemical fertilizer and increase sustainability by recycling nutrient-rich side-streams. However, organic contaminants in BBFs may lead to residues in the treated soil. This study assessed the presence of organic contaminants in BBF treated soils, which is essential for evaluating sustainability/risks of BBF use. Soil samples from two field studies amended with 15 BBFs from various sources (agricultural, poultry, veterinary, and sludge) were analyzed. A combination of QuEChERS-based extraction, liquid chromatography quadrupole time of flight mass spectrometry-based (LC-QTOF-MS) quantitative analysis, and an advanced, automated data interpretation workflow was optimized to extract and analyze organic contaminants in BBF-treated agricultural soil. The comprehensive screening of organic contaminants was performed using target analysis and suspect screening. Of the 35 target contaminants, only three contaminants were detected in the BBF-treated soil with concentrations ranging from 0.4 ng g -1 to 28.7 ng g -1; out of these three detected contaminants, two were also present in the control soil sample. Suspect screening using patRoon (an R-based open-source software platform) workflows and the NORMAN Priority List resulted in tentative identification of 20 compounds (at level 2 and level 3 confidence level), primarily pharmaceuticals and industrial chemicals, with only one overlapping compound in two experimental sites. The contamination profiles of the soil treated with BBFs sourced from veterinary and sludge were similar, with common pharmaceutical features identified. The suspect screening results suggest that the contaminants found in BBF-treated soil might come from alternative sources other than BBFs
    corecore