467 research outputs found
Dynamic and static properties of the invaded cluster algorithm
Simulations of the two-dimensional Ising and 3-state Potts models at their
critical points are performed using the invaded cluster (IC) algorithm. It is
argued that observables measured on a sub-lattice of size l should exhibit a
crossover to Swendsen-Wang (SW) behavior for l sufficiently less than the
lattice size L, and a scaling form is proposed to describe the crossover
phenomenon. It is found that the energy autocorrelation time tau(l,L) for an
l*l sub-lattice attains a maximum in the crossover region, and a dynamic
exponent z for the IC algorithm is defined according to tau_max ~ L^z.
Simulation results for the 3-state model yield z=.346(.002) which is smaller
than values of the dynamic exponent found for the SW and Wolff algorithms and
also less than the Li-Sokal bound. The results are less conclusive for the
Ising model, but it appears that z<.21 and possibly that tau_max ~ log L so
that z=0 -- similar to previous results for the SW and Wolff algorithms.Comment: 21 pages with 12 figure
Nucleation in Systems with Elastic Forces
Systems with long-range interactions when quenced into a metastable state
near the pseudo-spinodal exhibit nucleation processes that are quite different
from the classical nucleation seen near the coexistence curve. In systems with
long-range elastic forces the description of the nucleation process can be
quite subtle due to the presence of bulk/interface elastic compatibility
constraints. We analyze the nucleation process in a simple 2d model with
elastic forces and show that the nucleation process generates critical droplets
with a different structure than the stable phase. This has implications for
nucleation in many crystal-crystal transitions and the structure of the final
state
Interfacial tension and nucleation in mixtures of colloids and long ideal polymer coils
Mixtures of ideal polymers with hard spheres whose diameters are smaller than
the radius of gyration of the polymer, exhibit extensive immiscibility. The
interfacial tension between demixed phases of these mixtures is estimated, as
is the barrier to nucleation. The barrier is found to scale linearly with the
radius of the polymer, causing it to become large for large polymers. Thus for
large polymers nucleation is suppressed and phase separation proceeds via
spinodal decomposition, as it does in polymer blends.Comment: 4 pages (v2 includes discussion of the scaling of the interfacial
tension along the coexistence curve and its relation to the Ginzburg
criterion
Monte Carlo study of the magnetic critical properties of the two-dimensional Ising fluid
A two-dimensional fluid of hard spheres each having a spin and
interacting via short-range Ising-like interaction is studied near the second
order phase transition from the paramagnetic gas to the ferromagnetic gas
phase. Monte Carlo simulation technique and the multiple histogram data
analysis were used. By measuring the finite-size behaviour of several different
thermodynamic quantities,we were able to locate the transition and estimate
values of various static critical exponents. The values of exponents
and are close to the ones for the two-dimensional
lattice Ising model. However, our result for the exponent is very
different from the one for the Ising universality class.Comment: 6 pages, 8 figures. To appear in Phys. Rev.
Comments on Sweeny and Gliozzi dynamics for simulations of Potts models in the Fortuin-Kasteleyn representation
We compare the correlation times of the Sweeny and Gliozzi dynamics for
two-dimensional Ising and three-state Potts models, and the three-dimensional
Ising model for the simulations in the percolation prepresentation. The results
are also compared with Swendsen-Wang and Wolff cluster dynamics. It is found
that Sweeny and Gliozzi dynamics have essentially the same dynamical critical
behavior. Contrary to Gliozzi's claim (cond-mat/0201285), the Gliozzi dynamics
has critical slowing down comparable to that of other cluster methods. For the
two-dimensional Ising model, both Sweeny and Gliozzi dynamics give good fits to
logarithmic size dependences; for two-dimensional three-state Potts model,
their dynamical critical exponent z is 0.49(1); the three-dimensional Ising
model has z = 0.37(2).Comment: RevTeX, 4 pages, 5 figure
Simulations of grafted polymers in a good solvent
We present improved simulations of three-dimensional self avoiding walks with
one end attached to an impenetrable surface on the simple cubic lattice. This
surface can either be a-thermal, having thus only an entropic effect, or
attractive. In the latter case we concentrate on the adsorption transition, We
find clear evidence for the cross-over exponent to be smaller than 1/2, in
contrast to all previous simulations but in agreement with a re-summed field
theoretic -expansion. Since we use the pruned-enriched Rosenbluth
method (PERM) which allows very precise estimates of the partition sum itself,
we also obtain improved estimates for all entropic critical exponents.Comment: 5 pages with 9 figures included; minor change
Magnetisation switching in a ferromagnetic Heisenberg nanoparticle with uniaxial anisotropy: A Monte Carlo investigation
We investigate the thermal activated magnetisation reversal in a single
ferromagnetic nanoparticle with uniaxial anisotropy using Monte Carlo
simulations. The aim of this work is to reproduce the reversal magnetisation by
uniform rotation at very low temperature in the high energy barrier hypothesis,
that is to realize the N\'eel-Brown model. For this purpose we have considered
a simple cubic nanoparticle where each site is occupied by a classical
Heisenberg spin. The Hamiltonian is the sum of an exchange interaction term, a
single-ion anisotropy term and a Zeeman interaction term. Our numerical data of
the thermal variation of the switching field are compared to an approximated
expression and previous experimental results on Co nanoparticles
Dynamic Critical Behavior of the Swendsen-Wang Algorithm: The Two-Dimensional 3-State Potts Model Revisited
We have performed a high-precision Monte Carlo study of the dynamic critical
behavior of the Swendsen-Wang algorithm for the two-dimensional 3-state Potts
model. We find that the Li-Sokal bound ()
is almost but not quite sharp. The ratio seems to diverge
either as a small power () or as a logarithm.Comment: 35 pages including 3 figures. Self-unpacking file containing the
LaTeX file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and
eqsection.sty) and the 3 Postscript figures. Revised version fixes a
normalization error in \xi (with many thanks to Wolfhard Janke for finding
the error!). To be published in J. Stat. Phys. 87, no. 1/2 (April 1997
Clusters and Fluctuations at Mean-Field Critical Points and Spinodals
We show that the structure of the fluctuations close to spinodals and
mean-field critical points is qualitatively different than the structure close
to non-mean-field critical points. This difference has important implications
for many areas including the formation of glasses in supercooled liquids. In
particular, the divergence of the measured static structure function in
near-mean-field systems close to the glass transition is suppressed relative to
the mean-field prediction in systems for which a spatial symmetry is broken.Comment: 5 pages, 1 figur
Phase Transitions in a Two-Component Site-Bond Percolation Model
A method to treat a N-component percolation model as effective one component
model is presented by introducing a scaled control variable . In Monte
Carlo simulations on , , and simple cubic
lattices the percolation threshold in terms of is determined for N=2.
Phase transitions are reported in two limits for the bond existence
probabilities and . In the same limits, empirical formulas
for the percolation threshold as function of one
component-concentration, , are proposed. In the limit a new
site percolation threshold, , is reported.Comment: RevTeX, 5 pages, 5 eps-figure
- …
