8,411 research outputs found

    A network approach to parts provisioning for apollo prelaunch operations

    Get PDF
    Network approach to replacement-parts policy for Apollo prelaunch operation

    Oyster – Sharing and Re-using Ontologies in a Peer-to-Peer Community

    Get PDF
    In this paper, we present Oyster, a Peer-to-Peer system for exchanging ontology metadata among communities in the Semantic Web. Oyster exploits semantic web techniques in data representation, query formulation and query result presentation to provide an online solution for sharing ontologies, thus assisting researchers in re-using existing ontologies

    Measurements of the Total Cross Section for the Scattering of Polarized Neutrons from Polarized 3^3He

    Full text link
    Measurements of polarized neutron--polarized 3^3He scattering are reported. The target consisted of cryogenically-polarized solid 3^3He, thickness 0.04 atom/b and polarization 40%. The longitudinal and transverse total cross-section differences ΔσL\Delta\sigma_L and ΔσT\Delta\sigma_T were measured for incident neutron energies 2-8 MeV. The results are compared to phase-shift predictions based on four different analyses of n-3^3He scattering. The best agreement is obtained with a recent R-matrix analysis of A=4 scattering and reaction data, lending strong suport to the 4^4He level scheme obtained in that analysis.Comment: 19 pages RevTeX style, 5 postscript figures, excepted for publication in the Aug96 issue of Phys. Rev. C. Revised version includes correct version of 1 postscript figur

    An Editorial Workflow Approach For Collaborative Ontology Development

    Get PDF
    The widespread use of ontologies in the last years has raised new challenges for their development and maintenance. Ontology development has transformed from a process normally performed by one ontology engineer into a process performed collaboratively by a team of ontology engineers, who may be geographically distributed and play different roles. For example, editors may propose changes, while authoritative users approve or reject them following a well defined process. This process, however, has only been partially addressed by existing ontology development methods, methodologies, and tool support. Furthermore, in a distributed environment where ontology editors may be working on local copies of the same ontology, strategies should be in place to ensure that changes in one copy are reflected in all of them. In this paper, we propose a workflow-based model for the collaborative development of ontologies in distributed environments and describe the components required to support them. We illustrate our model with a test case in the fishery domain from the United Nations Food and Agriculture Organisation (FAO)

    A holistic approach to collaborative ontology development based on change management

    Get PDF
    This paper describes our methodological and technological approach for collaborative ontology development in inter-organizational settings. It is based on the formalization of the collaborative ontology development process by means of an explicit editorial workflow, which coordinates proposals for changes among ontology editors in a flexible manner. This approach is supported by new models, methods and strategies for ontology change management in distributed environments: we propose a new form of ontology change representation, organized in layers so as to provide as much independence as possible from the underlying ontology languages, together with methods and strategies for their manipulation, version management, capture, storage and maintenance, some of which are based on existing proposals in the state of the art. Moreover, we propose a set of change propagation strategies that allow keeping distributed copies of the same ontology synchronized. Finally, we illustrate and evaluate our approach with a test case in the fishery domain from the United Nations Food and Agriculture Organisation (FAO). The preliminary results obtained from our evaluation suggest positive indication on the practical value and usability of the work here presented

    Change Representation For OWL 2 Ontologies

    Get PDF
    Ontologies are entities that evolve over time; therefore it is essential to represent and manage changes to ontologies along with the ontologies themselves. In this paper we propose a change ontology for the OWL 2 ontology language. This change ontology comprises a fine-grained taxonomy of ontology changes that considers the lowest-level atomic operations that can be performed in an ontology, but in addition also on other abstraction levels (ontology entity, composite). It thus allows to describe on a fine grained level how an ontology has changed from one version to another, and it also provides the vocabulary to talk about the changes that enables, for instance, to associate provenance or other rich metadata, such as argumentation structures. Additionally, we discuss some useful applications of our change ontology and its technological support

    Trapping and manipulating neutral atoms with electrostatic fields

    Full text link
    We report on experiments with cold thermal 7^7Li atoms confined in combined magnetic and electric potentials. A novel type of three-dimensional trap was formed by modulating a magnetic guide using electrostatic fields. We observed atoms trapped in a string of up to six individual such traps, a controlled transport of an atomic cloud over a distance of 400μ\mum, and a dynamic splitting of a single trap into a double well potential. Applications for quantum information processing are discussed.Comment: 4 pages, 4 figure

    Interpretation of Nuclear Quadrupole Resonance Spectra in Doped La2_2CuO4_4

    Full text link
    The nuclear quadrupole resonance (NQR) spectrum of strontium doped La2_2CuO4_4 surprisingly resembles the NQR spectrum of La2_2CuO4_4 doped with excess oxygen, both spectra being dominated by a main peak and one principal satellite peak at similar frequencies. Using first-principles cluster calculations this is investigated here by calculating the electric field gradient (EFG) at the central copper site of the cluster after replacing a lanthanum atom in the cluster with a strontium atom or adding an interstitial oxygen to the cluster. In each case the EFG was increased by approximately 10 % leading unexpectedly to the explanation that the NQR spectra are only accidentally similar and the origins are quite different. Additionally the widths of the peaks in the NQR spectra are explained by the different EFG of copper centres remote from the impurity. A model, based on holes moving rapidly across the planar oxygen atoms, is proposed to explain the observed increase in frequency of both the main and satellite peaks in the NQR spectrum as the doping concentration is increased
    corecore