An Editorial Workflow Approach For Collaborative
Ontology Development

=

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Servicio de Coordinacion de Bibliotecas de la Universidad...

' Ontology Engineering Group, Laboratorio de Inteligencia Artificial
Facultad de Informatica, Universidad Politécnica de Madrid, Spain
{rpalma, ocorcho,asun}@fi.upm.es
Institute AIFB, University of Karlsruhe, Germany
{pha,giji}@aifb.uni-karlsruhe.de

Abstract. The widespread use of ontologies in the last years has raised new
challenges for their development and maintenance. Ontology development has
transformed from a process normally performed by one ontology engineer into
a process performed collaboratively by a team of ontology engineers, who may
be geographically distributed and play different roles. For example, editors may
propose changes, while authoritative users approve or reject them following a
well defined process. This process, however, has only been partially addressed by
existing ontology development methods, methodologies, and tool support. Fur-
thermore, in a distributed environment where ontology editors may be working
on local copies of the same ontology, strategies should be in place to ensure that
changes in one copy are reflected in all of them. In this paper, we propose a
workflow-based model for the collaborative development of ontologies in dis-
tributed environments and describe the components required to support them. We
illustrate our model with a test case in the fishery domain from the United Nations
Food and Agriculture Organisation (FAO).

1 Introduction

The growing use and application of ontologies in the last years has lead to an increased
interest of researchers in the development of ontologies, either from scratch or by
reusing existing ones. Ontology development and maintenance activities are addressed
by many different methodologies (e.g. Methontology, On-To-Knowledge, DILIGENT,
etc.). However, most of them only consider the development of ontologies by single
users or a small group of ontology engineers placed in the same location. More impor-
tant is that even though they address the methodological aspects, in general they focus
less on the process followed by organisations to coordinate the collaborative ontology
development. In practice ontologies may be distributed, and a whole team of ontology
engineers with different roles may collaborate in the development and maintenance,
usually following a well defined process. Examples of such collaborative development
processes can be found in international institutions like the United Nations Food and
Agriculture Organisation (FAO), who are developing and maintaining large ontologies
in the fishery domain [8]. Other similar examples are those of the Gene Ontology (GO)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 227 2008.
(© Springer-Verlag Berlin Heidelberg 2008

https://core.ac.uk/display/148655914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

228 R. Palma et al.

projecﬂ, which addresses the need for consistent descriptions of gene products in dif-
ferent databases, the caGrid project@, which aims at providing a virtual informatics
infrastructure that connects data, research tools, scientists, and organizations, etc.

Consequently, in this collaborative organisational setting, existing approaches are
not enough to support all ontology development and maintenance needs. Furthermore,
although recently some proposals and tools have been designed specifically to sup-
port collaborative ontology development (e.g. client-server mode in Protégé along with
the PROMPT and change-management plugins), they generally only address parts of
the overall problem (see section []). Most of the existing advanced ontology tools (e.g.
Protégé core system, SWOOP, etc.) support only the single-user scenario, where there
is just one user involved in the development and later modification of the ontologies.
With such tools, a typical scenario of collaborative ontology development would look as
follows: An editor changes an ontology using his ontology editor system and then sends
(e.g. using email or uploading it to an ontology repository) his locally changed ontol-
ogy to other users (i.e. to add more changes using their own Protégé system, or review
current changes). Even in the scenario where all users are editing the same ontology
stored in a central server (e.g. using client-server mode in Protégé), the coordination of
the actions of the editors (e.g. when editors want their changes to be reviewed or what
kind of actions they can perform) is not yet fully supported.

As we can see from the previous discussion, in this type of collaborative scenario,
change management is central. Hence, we need appropriate procedures (and corre-
sponding infrastructure) to control and support the management of ontology changes.
This procedure can be modelled as a collaborative workflow, which according to [2],
is a special case of epistemic workflow characterized by the ultimate goal of designing
networked ontologies and by specific relations among designers, ontology elements,
and collaborative tasks. The need for such workflows has also been acknowledged in
the past by other related works (e.g. [L7]). An example of such workflow is that fol-
lowed by the FAO (described in [8]]), which we take as a use case in our work, in order
to derive a generic set of required activities to support it.

Following this workflow, the development process starts with proposals for ontology
changes. These proposals are discussed by multiple users (with different roles) in a col-
laborative way. For instance, if a change is made by an ontology editor, it has to be ap-
proved by a validator. After that, the change will be considered definitive and permanently
added to the structure. Once changes are definitive, we will have a new stable version of
the ontology, which requires the appropriate support to manage different ontology ver-
sions. Of course one could think of other kinds of workflows in different situations.

In this paper we present our approach for the management of collaborative ontol-
ogy development in a distributed scenario by means of an editorial workflow. We
analyse the collaborative development process using as illustrating scenario the case
study at FAO and derive a set of functional requirements to support the process. We
then introduce our proposal to support the collaborative ontology development where
we address the identified problems. In particular, we propose a formal model for the
representation of the workflow and describe the relationship with other models and

! http://www.geneontology.org/
http://www.cagrid.org/

http://www.geneontology.org/
http://www.cagrid.org/

An Editorial Workflow Approach 229

methods required in the management of ontology changes in distributed environments.
Our contribution also includes the implementation of the proposed approach. The re-
mainder of this paper is organised as follows: In section 2] we analyse the collaborative
workflow scenario at FAO and derive a set of requirements based on the editorial work-
flow. In section[3 we introduce our approach for the collaborative ontology development
based on the requirements derived in the previous section and present our implemen-
tation that provides the technological support to the presented models and methods.
Section [provides a brief summary of related approaches to collaborative ontology
development. Finally we conclude with a discussion in section[3

2 Requirements for Collaborative Ontology Development

In this section we present the most relevant requirements to support the collaborative
ontology development based on the analysis of the process (i.e. workflow) typically
followed by organisations in the development and maintenance of ontologiesﬁ. For our
analysis we considered existing processes for collaborative ontology development, also
taking similar works in the state of the art into account (e.g. [10]). We use a case study
of the NeOn projecﬂ for illustration: Specifically, we consider the editorial workflow
of the fisheries ontologies lifecycle from FAO [S].

2.1 Overview of the Fisheries Ontologies Lifecycle

Within this case study, NeOn partners are developing an ontology-based information
system to facilitate the assessment of fisheries stock depletion by integrating the variety
of information sources available. In this context, the goal of the case study is to to
implement an ontology-based Fishery Stock Depletion Assessment System (FSDAS)
as well as an application to manage the fishery ontologies and their lifecycle.

The full lifecycle of the fisheries ontologies is introduced in [9], we here focus on
the ontology engineering phase: In a nutshell, there are several actors involved in the
engineering phase of the fishery ontology lifecycle, including experts in ontology mod-
eling, that are in charge of defining the original skeleton of the ontology, ontology edi-
tors, that are in charge of the everyday editing and maintenance of the ontologies, and
subject matter experts who know about the domain to be modeled. Finally, validators
are subject experts who can move a change to production status for external availability.
Ontology development follows a well defined collaborative workflow, which needs to
be supported in the engineering environment. The editorial workflow allows ontology
editors to consult, validate and modify the ontology keeping track of all changes in a
controlled manner. Finally, once editors in charge of validation consider the ontology
final, they are authorized to release it and make it available to end users and systems.

2.2 Functional Requirements

The functional requirements for the collaborative editorial workflow specify the spe-
cific functionality of the workflow, including the specification of the workflow behavior.

3 In the remainder of this paper we refer to this process as the collaborative editorial workflow.
4 http://www.neon-project.org/

http://www.neon-project.org/

230 R. Palma et al.

Some of the requirements that we introduce in the following are similar to the ones that
have been already identified in the past (see the analysis of [10] in section d). How-
ever, in our work, we further identified additional requirements to support the process
followed typically by many organisations to coordinate the collaborative ontology de-
velopment. When appropriate, we illustrate the requirement using FAO scenario.

Lifecycle Requirements. A collaborative editorial workflow should implement the
necessary mechanisms to allow ontology editors to: consult, modify and validate on-
tologies. In some cases, ontologies may also need to be published on the internet once
they are fully validated. Furthermore, the process should ensure that the aforementioned
activities are carried out in a controlled and coherent manner. Hence, the editorial work-
flow is responsible for the coordination of who (depending on the user role) can do what
(i.e. what kind of actions) and when (depending on the status of the ontology elements
— classes, properties and individuals — and the role of the user).

The activities of the editorial workflow are being done by users that are ontology
editors in charge of the everyday editing and maintenance work of the ontologies. Each
user is assigned a specific role (which has associated permissions) by the organisation
based on his expertise and responsibilities. Depending on the user permissions, he can
be in charge of developing specific fragments of ontologies, revising work done by
others, or developing new versions of ontologies. Ontology editors know about the on-
tologies domain, but usually know little or nothing about ontology software or design
issues. For instance, one approach for assigning the user role can be driven by the mod-
ule of the ontology the user is responsible for (e.g. [6]). As another example, in FAO,
an ontology editor can be assigned one of the following roles:

— Subject experts (SE) know about specific aspects of the ontology domain and are in
charge of adding or modifying ontology content.

— Validators (V) revise, approve or reject changes made by subject experts, and they
are the only ones who can copy changes into the production environment for exter-
nal availability. They have a broader knowledge of the ontology domain and have
at least some knowledge about design issues.

To enforce permissions, it is required that (i) the system supports the different user
roles and (ii) users identify themselves to the system before using it. Furthermore, to
control when the ontology editors are allowed to work with an ontology element, in
addition to the user roles, every ontology element is required to have a starus. Ontol-
ogy editors can change the status depending on their role. For instance, the possible
status ontology elements can have in FAO include: Draft for the proposed additions or
updates, 7o Be Approved for the proposed changes that are ready to be reviewed by a
validator, Approved for the accepted changes, To Be Deleted for the proposed removals
and Published for the changes released to the internet.

Workflow Activities. Activities required to support the editorial workflow include the
operations (or possible actions) the ontology editors are allowed to perform depending
on their roles and the status of the ontology elements.

Edit ontology element
Insert an ontology element. This operation triggers the start of the editorial workflow.

An Editorial Workflow Approach 231

Update an ontology element. Editors can update ontology elements. Depending on
their role and the status of the element, this operation could trigger also the start of
the editorial workflow. For instance, in our illustrative scenario, a SE can only update
elements in “Draft” or ”Approved” status. In both cases the status of the element is
automatically reset by the system to ”Draft”, and the element will need to pass through
the whole workflow again.

Delete an ontology element. Editors propose elements for deletion. In general this is
not a definitive action, and it has to be authorized by an appropriate editor.

Change status of ontology element. While inserting, updating and deleting elements,
their status is automatically changed by the system. There are other cases where a spe-
cific action from editors is required to move an element from one status to another and
make the editorial workflow to function (e.g. SE’s need to explicitly send elements in
“Draft” status to the ”To Be Approved” status).

Publish ontology. In some organisations, authorized editors are allowed to copy an
ontology from the test and validation environment (editorial workflow in the Intranet)
to the production environment (Internet). By doing so, the system automatically assigns
the right version to the published ontology following a versioning scheme.

Visualization Requirements

View change history. Editors need to be able to view the logs of ontology changes and
their related information including the history notes e.g. argumentation of the tracked
changes.

View based on status and user role. The interface should be able to provide different
data views based on the user role.

View use statistics. Editors can view information about an ontology regarding how
the ontology has been used or evolved throughout the time e.g. provenance, editors,
frequency of changes, the fragment/domain of the ontology changed most rapidly, etc.

View ontology statistics. Authorized users can view statistics of the ontology being
edited e.g. depth of the class hierarchy; number of child nodes; number of relationships
and properties; number of concepts per branch.

Change Management

Representation of changes. A main requirement is the explicit representation of the
changes that editors are able to perform to ontologies. The representation should ensure
the accessibility and interoperability with other components (e.g. workflow, ontology
metadata, etc.) and the maintenance of the chronological order of the changes to sup-
port e.g. undo/rollback operations or reconstruction of performed operations (e.g. when
syncrhonizing/propagating changes). Additionally, to facilitate the previous tasks and
provide an efficient link between what the user sees (e.g. ontology elements) and what
the system manage internally (e.g. axioms), the representation should provide a flexi-
ble classification of changes that considers the actual “atomic” operations that can be
performed over ontologies in addition to operations at the element level (e.g. to support
the different status that each ontology element can have during the editorial workflow)
or the complex operations that have been considered in the past (see section H)). In-
formation about changes should include e.g. the operation performed, the time of the
operation, the user, the element associated, the previous change and the description.

232 R. Palma et al.

Capture ontology changes. The system should automatically log ontology changes.

Change Propagation and notification. After new changes are submitted to the ontol-
ogy, editors involved in this workflow process should be informed when they log into
the system. Each author (or the coordinator) should be able to view changes made by
other authors, even without editing permission.

Versioning. An additional requirement is the management of ontology versions. The
first modification to an approved/published ontology automatically changes the current
version. This modified version of the ontology will either become a new version (i.e.
with a different version information) or if specified by the editor remain the same ver-
sion. In any case, versions need to be uniquely identified.

Concurrency Control and Conflict Resolution. An important issue that has to be
addressed in this collaborative scenario is to ensure the integrity of the ontology via
concurrency control mechanisms and appropriate means for the resolution of conflicts
whenever two or more editors submit changes to the same element concurrently.

3 A Workflow-Based Collaborative Ontology Development
Approach

In this section we present our solution to support the collaborative ontology develop-
ment and describe how it tackles the aforementioned requirements. We first present the
conceptual models that provide the foundations to represent the required information
in our solution and then we present the implementation support.

3.1 Conceptual Models

Change Representation. A core element in our approach is the representation of
changes (c.f. change management requirement). In [13|] we presented our proposal for
the representation of changes which integrates many of the features of the existing ap-
proaches (e.g. [[15], [3]]) in a consistent layered manner. In this paper we highlight only
the most relevant parts of our representation of changes: We refine and extend existing
work and propose a layered approach for the representation of changes that consists
of a generic ontology that models generic operations in a taxonomy of changes that
are expected to be supported by any ontology language and that can be specialized for
specific ontology languages (e.g. OWL) while still providing a common, independent
model for the representation of ontology changes. It comprises three levels for the clas-
sification of changes: Atomic (i.e. the smallest and indivisible operation that can be
performed in a specific ontology model), Entity (i.e. basic operations that can be per-
formed over ontology elements usually from an ontology editor) and Composite (i.e.
group of changes applied together that constitute a logical entity). It also provides the
link to capture the argumentation of changes and it relies and uses some of the knowl-
edge defined in our early work, the Ontology Metadata Vocabulary (OMV) [3] to refer
to ontologies and users. OMV is a metadata schema that captures relevant information
about ontologies such as provenance, availability, statistics, etc. Besides the main class

3> Our conceptual models are available in OWL athttp://omv.ontoware.org

http://omv.ontoware.org

An Editorial Workflow Approach 233

Ontology, OMYV also models additional classes and properties required to support the
reuse of ontologies, such as Organisation, Person, LicenseModel, OntologyLanguage
and OntologyTask among others. Our change ontology has been implemented as an
OMV extension because it models specific ontology metadata (i.e. ontology changes).

Furthermore, the change ontology provides the means to support not only the track-
ing of changes but also the information that identifies the original and the current ver-
sion of the ontology after applying the changes (versioning requirement). This is not a
trivial issue: even though ontologies are in general identified by an URI, in practice it is
not enough to identify a particular ontology version (i.e. different versions of the same
ontology have the same URI). Hence, the management of ontology versions requires a
clear definition of the ontology identification. In our solution, we rely on the identifica-
tion of ontologies that we presented in [3]], which consists of a tripartite identifier: the
ontology URI, the ontology version (if present), and the ontology location.

Finally, to keep track of the actual sequence of changes (i.e. the order in which
changes were performed), our ontology relies on two elements: each change is linked to
its predecessor via the "hasPreviousChange” object property and a ’Log” class provides
the pointer to the last change in the ontology history.

Workflow Model. Based on the analysis presented in section 2] we found that some
of the possible actions and states in the editorial workflow apply at different levels of
abstraction. Therefore our solution considers the editorial workflow at two levels: on-
tology level and ontology element level. Although the workflows can be used indepen-
dently of the underlying ontology model, the specific set of ontology elements depend
on the ontology model. In our approach we are mainly considering the OWL ontology
model, in which an OWL ontology consists of a set of axioms and factdd. Facts and ax-
ioms can relate to classes, properties or individuals, and hence that is the set of ontology
elements we are considering.

As previously discussed, the workflow details (e.g. the specific roles, actions, etc.)
depend on the organisation setting. To exemplify, in the rest of this section we discuss
our solution for the particular scenario in FAO. Figures [I] and 2l show the two different
workflow levels (i.e. element and ontology level). States are denoted by rectangles and
actions by arrows. The information in parenthesis specifies the actions that an editor
can perform depending on its role, where ”SE” denotes Subject Expert, V" denotes
Validator and ”-”” denotes that the action is performed automatically by the system.

The possible states (see Figure[T)) that can be assigned to ontology elements are:

— Draft: This is the status assigned to any element when it passes first into the editorial
workflow, or when it was approved and then updated by a subject expert.

— To be approved: Once a "SE” is confident with a change in draft status the el-
ement is passed to the "To Be Approved” status, and remains there until a ”’V”
approves/rejects it.

— Approved: If a ”V” approves a change in an element in the "To Be Approved”
status, it passes to the ”Approved” status. Additionally, this is the default state for
every element of the initial version of a stable ontology.

% In our current implementation we support the upcoming OWL 2 language. See
http://www.w3.0org/TR/owl2-syntax/

http://www.w3.org/TR/owl2-syntax/

234 R. Palma et al.

) Update

Send toslé)e approved Send t(()v]approved
——————To Be Approved————3—| Approved
[—————————
Reject to draft N
v eject to(vt;e approved ‘\ Send to
Upd Upd Rejectto oeieted
pdate pdate elete
(s6) W) ap’?‘;t"’ed \ 2l
Delete Delete
56) @ W ___|ToBe Deleted

Fig. 1. Editorial workflow at the element level

Move to draft (-)

Move to
Move to be

draft approved Approval Publish
O 0 Draft 0 ToBe] Approved |— Published
Approved

Fig. 2. Editorial workflow at the ontology level

— To be deleted: If a ”SE” considers that an element needs to be deleted, the item
will be flagged with the ”To Be Deleted” status and removed from the ontology,
although only a ”V” will be able to definitively delete it.

The ontology has a state (see Figure 2)) that is automatically assigned by the system
(denoted with ”-" in Figure 2), except from the “published” state as described below:

Draft: Any change to an ontology in any state automatically sends it into draft state.
To be approved: When all changes to an ontology version are in ”To Be Approved”
state (or deleted) the ontology is automatically send to To Be Approved” state.
Approved: When all changes to an ontology version are in ”Approved” state (or
deleted) the ontology is automatically send to ”Approved” state. Additionally, this
is the default state of the initial version of a stable ontology.

Published: Only when the ontology is in ”Approved” state, it can be sent by a
validator to Published” state.

As described in section 2.1} the editorial workflow starts after getting a stable popu-
lated ontology that satisfies all the organizational requirements. Hence, we assume that
the initial state of this stable ontology (and all its elements) is ”Approved’ﬂ.

Note that during the editorial workflow, actions are performed either implicitly or
explicitly. For instance, when a user updates an element he does not explicitly perform
an update action. In this case the action has to be captured from the user interface and
recorded when the ontology is saved. In contrast, Validators explicitly approve/reject
proposed changes and the action is recorded immediately when performed.

Similarly to our change ontology, we decided to model the workflow elements (i.e.
roles, status, actions) using an (OWL-Lite) ontology (i.e. a workflow ontology) that al-
lows the formal and explicit representation of knowledge in a machine-understandable

" In a different scenario, the workflow could start with an empty ontology (without elements),
which we could assume that will be by default in ”Approved” state.

An Editorial Workflow Approach 235

format. Furthermore, having both models (i.e. ontology changes and workflow) formal-
ized as ontologies will facilitate the representation of the tight relationship that exists
between both of them. For instance, consider a user with role ’subject expert” that "in-
serts” a new ontology “class” to the ontology. That “class” will receive automatically
the “draft” state. All the information related to the process of inserting a new ontology
element will be captured by the workflow ontology, while the information related to the
particular element inserted, along with the information about the ontology before and
after the change is captured by the change ontology. Additionally, the workflow process
also relies on OMV to refer to ontologies and users.

Workflow ontology. The main classes and properties of the workflow ontology and its
relationships with the other ontologies in our approach are shown in Figure

P
{ OMV Core | Change Ontology

) omv:Ontology c i B Change [~ ™

hasptate hasontologyfsta
latedchang
Action
Rol _
Role ‘ o E ity Ontology
' H i i
i y H "‘
fro[Sublect Expert | 4 PUBISh | e m i" E“
: — 11— |
E“ Validator | To Be i To Be A
Send to be Rt
E — | deleted | Approved H
(R Viewer — i
| i
7 Aperoved | 1) Appryed
i
i
i
i
i

H
H
i.] ToBe Published
! Deleted | Onto
E
|| Deleted

Reject to be
- Approved
1
______ Reject to
Draft
i 1
—_— f Send to be
nnnnn ! - “Approved
i —
permanf] Send to
ObjectProperty Approved
 ——
&

L

Fig. 3. Workflow ontology

The different roles of the ontology editors are modelled as individuals of the Role
class that is related to the Person class of the OMV core ontology (i.e. a person has
a role). To explicitly model the separation between the possible states of ontology el-
ements (i.e. classes, properties and individuals) and the possible states of the ontol-
ogy itself, the State class is specialized in two subclasses (i.e. EntityState and
OntologyState. Similarly to the roles, the possible values of the states are mod-
elled as individuals of their respective subclass. Furthermore, the two subclasses of
State allow to represent the appropriate relationships at the element and ontology
level: To specify that an ontology element has a particular state we rely on the class

236 R. Palma et al.

EntityChange from the change ontology which is associated to a particular ontology
element (as described in section [[13]) and associate it with subclass EntityState,
and to specify that an ontology has a particular state we rely on the class Ontology
from the OMYV core and associate it with the subclass OntologyState.

Finally, for the actions there is also a separation between the possible actions at the
element level and actions at the ontology level. Hence, the Action class is special-
ized in two subclasses (i.e. EntityAction and OntologyAction. To track the
whole process (and keep the history) of the workflow, the possible actions are modelled
as subclasses of the appropriate Action subclass. Similar to the states, the two sub-
classes of Action also allow to represent the appropriate relationships at the element
and ontology level: to specify that an action was performed over a particular ontology
element, the subclass EntityAction is associated with class EntityChange. As
we explained before, actions at the ontology level are performed automatically by the
system except from publish which changes the public version of the ontology. There-
fore, the only subclass of OntologyAction is Publish that is associated to the
class Ontology to specify the previous and next public version of the ontology.

3.2 Implementation Support

Our approach has been implemented within the NeOn Toolkiff, an extensible ontology
engineering environment based on Eclipse, by means of a set of plugins and extensions.
A high level conceptual architectural diagram of the involved components is shown in
Figure[d] We present in the following, first the change capturing related components (i.e.
left side of the figure), then the workflow management related components (right side
of the figure), next the user related components for editing and visualizing ontologies
(and related information) in the editorial workflow (upper part of the figure) and finally
our distributed registry implementation (bottom part of the figure).

L)

N
=

|Change Capturingl | Workflow Managment|

Oyster Distributed Registry

Change Domain Workflow
Ontology Ontology Ontology
Individuals Metadata Individuals

Fig. 4. Conceptual architecture for the collaborative ontology development support

Change Capturing Components. Once the ontology editor specifies that he wants to
monitor an ontology, changes are automatically captured (change management

8http://www.neon-toolkit.org/

http://www.neon-toolkit.org/

An Editorial Workflow Approach 237

requirement) from the ontology editor by a change capturing plugin. This plugin is noti-
fied about events that consist of ontology changes performed by the user in the ontology
editor. For each of these events, the change is represented according to the change on-
tology by creating the appropriate individual. For example, adding a class individual in
the ontology editor creates the entity change ”Add Individual” and the two correspond-
ing atomic changes (OWL 2 axioms): ”Add Declaration” and ”Add ClassMember”. As
described by the change ontology, each individual includes relevant information such as
the author, the time, the related ontology, etc. The individuals are stored into the Oys-
ter distributed registry [12]. This plugin is also in charge of applying changes received
from other clients to the same ontology after Oyster synchronizes the changes in the dis-
tributed environment (see last subsection). Finally, this plugin extends the NeOn Toolkit
with a view to display the history of ontology changes (visualisation requirements).

Workflow Management Components. In our implementation, the workflow manage-
ment component (i) takes care of enforcing the constraints imposed by the collaborative
workflow, (ii) creates the appropriate action individuals of the workflow ontology and
(iii) registers them into the distributed registry. Hence, whenever a new workflow action
is performed, the component performs the following tasks:

— It gets the identity and role of the user performing the action (if it is an explicit
action) e.g. send to approve, or the associated change (if it is an implicit action) e.g.
adding a new class implicitly creates an insert action.

— It gets the status of the ontology element associated to the action/change.

— It verifies that the role associated to the user can perform the requested action when
the ontology element is in that particular status.

— If the verification succeeds, it creates the workflow action and registers it.

— If the verification fails, it undoes the associated change(s) for the implicit actions
because the complete operation (e.g. adding a new class) failed.

Ontology Editing and Visualization Components. To support the workflow activities
(workflow activities requirements) we rely on the NeOn Toolkit which comes with an
ontology editor that allows the editing of ontology elements. Additionally, according to
the visualisation requirements the NeOn Toolkit is extended with a set of views that al-
low editors to (i) see the appropriate information of ontologies in the editorial workflow
and (ii) perform (as described in B.I)) the applicable workflow actions (approve, reject,
etc.), depending on their role. There are four viewsd:

Draft view: Shows all proposed changes (from all editors) to that ontology version.
In accordance to FAO scenario the changes of the current editor are editable while
changes from other editors are non editable (see Figure[3)).

Approved view: Shows the approved changes.

To Be Approved view: Shows all changes (from all editors) pending to be approved.
To Be Deleted view: Shows all proposed deletions (from all editors).

? Subject experts see the first two views, validators see the latter three.

238 R. Palma et al.

€ OWL - Eclipse SDK =1
Fie Edt Navigate Search Project Run Resistry Window Heln
(e &A@ g *B £ |[) owt. | & Java
Zn ontolagy Mav 52 = 0| AR Entity Properties Change Log ¥iew | =1 Approved view | [Draft view 52 [ToBe approved view] To Be Deleted View =0
g rapuak [OWL] ~
'{‘ ;55 h»r\[‘!h " 3 v.ida. . Refresh Changes List
(8 dasses Ontology | Change Type Related Entity Author Time Status Last Action
- (@ FieType

=@ OwnableThing

@ Lexicalization

=@ Effect
& LexicalEntry
#- @ agent ... AddClass OntologyTask Raul Palma 23-sep-2008 14:28:13 Draft RejectToDraft by Peter Haase
& @ Coordinates 2
g Bty httgi... AddCless OntologyDomain Raul Paima 23-5ep-2008 14:28:21 Draft Insertby Raul Paima
3 tndividusks 2 =5 hitp:... AddCbiectFroperty isOfType Raul Pama 235ep-2008 14:28:33 Draft Insertby Raul Paima
o8-

http:... AddObjectPropertyDomsin isOfType Raul Palna Z3-sep-2008 14:28:51 Draft Update by Raul Palna
http:.,, Addimdividul OrtalagyTask Raul Palna 23-55p-2008 14:29:10 Draft Insert by Raul Palma

DOOOO0000000000000

2 Annckation

< bd

Subrit Changes To Be Approved

Fig. 5. Draft View in the NeOn Toolkit

Distributed Registry. Ontologies are stored within a repository and their metadata is
managed by the Oyster distributed registry@ (change management requirement). The
metadata includes information about ontologies and users (represented using OMV), the
changes to the ontology (represented using the change ontology) and about the actions
performed (represented using the workflow ontology). For each change the status is also
kept to support the editorial workflow. When a new change is registered into an Oyster
node, Oyster automatically updates the log history keeping track of the chronological
order of changes: It gets the last registered change (using the “Log” class) and adds it
as the previous change of the current one. Then it updates the ”Log” class to point to
the current change.

The local Oyster nodes contact each other creating a distributed ontology registry.
In this distributed environment, Oyster also propagates the ontology changes, thus al-
lowing the notification of new changes to ontology editors (change management re-
quirement). That is, once we have the required changes in a machine-understandable
format, the system propagates them to the distributed copies of the ontology. For this
task, we follow a synchronization approach that is a combination of a push and pull
mechanism. During the synchronization, nodes periodically contact other nodes in the
network to exchange updated information (pull changes) and optionally they can push
their changes to a specific node (called the super node) such that if a node goes offline
before all other nodes pull the new changes, the node changes are not lost. In this way,
Oyster minimizes the conflicts or inconsistencies due to concurrent editing as it auto-
matically synchronizes changes periodically (and it allows to force the synchronization
immediately) in the distributed environment such that every editor will have an up-to-
date copy of the ontology with the proposed changes (concurrency control and conflict

Yhttp: //ontoware.org/projects/oyster2/

http://ontoware.org/projects/oyster2/

An Editorial Workflow Approach 239

resolution requirement). Nevertheless, conflicts in the collaborative workflow could still
occur as logical conflicts in the form of inconsistencies or conflicts due to concurrent
editing of an ontology. The strategies to deal with those potential problems are out of
the scope of this paper, and we refer the reader to [[13] for additional information.

4 Related Work on Collaborative Ontology Development

The problem of collaborative ontology development has been partially addressed in
the literature with methodological and technological results, which are not necessarily
aligned. In the remainder of this chapter we mainly focus on the existing works of
ontology development where some kind of reviewing process has been acknowledged.

In [16], [14] the authors introduce DILIGENT, an ontology engineering process for
decentralized cases of knowledge sharing. It identifies several key roles involved in col-
laboratively building the same ontology. The process entails different users in the cre-
ation of a shared ontology and adaptation to local needs and a control board in charge
of deciding how the shared ontology will be changed based on the user requests. DILI-
GENT also considers the provision of arguments for the requested changes and design
decisions in a semi-formal way (similar to [13]).

A related work - DOGMA-MESS —is presented in [1] (and [7]]). The authors propose
a generic model for understanding the interorganisational ontology engineering process
where the knowledge moves in an upward spiral starting at the individual level, moving
up to the organisational level, and finally up to the interorganisational level.

In [10] the authors present the Change and Annotation Ontology (CHAO) to rep-
resent changes between two versions of an ontology and user annotations related to
these changes, and two Protégé plugins: The Change-management plugin that provides
access to a list of changes (i.e. instances of CHAO) and enables users to add annota-
tions to changes and the PROMPT plugin (also introduced in [11]]) that provides com-
parisons between two versions of an ontology, allowing to examine the list of users
who performed changes and to accept and reject changes. Finally they introduce the
client/server mode in Protégé for synchronous editing by multiple users.

Another similar tool support is presented in [[17]. The authors introduce an extension
of the existing Protégé system that supports collaborative ontology development (i.e.
Collaborative Protégé). The extension enables (1) the annotation of ontology compo-
nents and ontology changes and (2) the searching and filtering of user annotations based
on simple or complex criteria. The authors also propose two types of mechanisms for
voting change proposals (i.e. a 5-star voting or a Agree/Disagree type of voting).

Although [16] and [[1] consider the collaborative development of ontologies in a dis-
tributed setting, it is not clear how change requests are represented, there is no explicit
tracking of the change operations in the shared ontology that would be useful for local
users to identify the approved changes or compare it with the local copy and there is
no history of the rejected changes. Moreover, local users are not notified automatically
of changes and consequently they could be working with different versions of the on-
tology which might hamper the interoperability. Also, [1]] does not consider how users
interact in the process depending on their role.

240 R. Palma et al.

A main difference in [10] and [17] with respect to our solution is that the track-
ing of changes and curator actions (i.e. accept/reject changes) is done in a centralized
manner i.e. either in a local copy or in a centralized server. Additionally, although the
approaches consider the reviewing of changes (e.g. acceptance/rejection of changes),
it is not clear what kind of roles (and related permissions) are considered, how those
actions are traced or how is the process flow for the reviewing.

In our solution, we rely on a formal representation of changes which provides the
basis for the creation of change logs that support e.g. the comparison of ontologies or
the synchronization of distributed copies of the ontology. Moreover, we identify dif-
ferent user roles involved in the process of the ontology development and propose to
formalize the reviewing process in a machine-understandable format such that all taken
actions can be tracked and exchanged. In our solution, users are able to use the same
version of the ontology (i.e. a local copy) and work in a decentralized manner given that
changes and curator actions are maintained in a distributed registry which is in charge
of synchronizing the information automatically.

5 Discussion

The need for a systematic approach to ontology development in a highly distributed
environment has been emphasized many times in the past in the ontology engineering
community. As a result, different solutions have been proposed ranging from informal
or lightweight strategies (e.g. [4]]) to semi-formal approaches like in the Gene Ontology
project to formal methodologies (e.g. [16]]). In this paper we have presented our so-
lution to support the collaborative ontology development in distributed environments.
It consists of a formal strategy where the ontology development process is explicitly
represented. The criteria for choosing this strategy was based on the analysis of the
requirements of large organisations using as test case the FAO scenario.

Hence, we proposed two generic workflows specialised at different levels of abstrac-
tion (i.e. ontology element level and ontology level). Our proposal includes the defi-
nition of a workflow ontology for the formal representation of the workflow process.
Additionally, we introduced the role of the workflow in the infrastructure required for
the management and control of ontology changes and describe its relationships with
other components and activities (i.e. change representation, versioning, etc.). We il-
lustrated in a simple scenario how the workflow ontology supports the collaborative
ontology development and its tight relationship with the ontology for the representation
of changes. Finally, we introduced our implementation to support the proposed model.

Although we are already evaluating individual components of our approach, our next
step is the complete evaluation of our approach within FAO and other scenarios. In the
future, we plan to provide additional features to the NeOn toolkit such as a Change
View to shows the changes (diff) between two versions of an ontology according to the
change ontology or a full undo/redo support. Further, we are working on the integration
of our work with other threads of related work, such as argumentation support.

Acknowledgments. Research reported in this paper was partially supported by the EU
in the IST project NeOn (IST-2006-027595,http: //www.neon-project.org/k

http://www.neon-project.org/

An Editorial Workflow Approach 241

References

10.

11.

12.

13.

14.

15.

16.

17.

. de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A meaning evolution sup-

port system for interorganizational ontology engineering. In: Proc. of the International Con-
ference on Conceptual Structures (ICCS 2006), Aalborg, Denmark. Springer, Heidelberg
(2006)

. Gangemi, A., Lehmann, J., Presutti, V., Nissim, M., Catenacci, C.: C-ODO: an OWL meta-

model for collaborative ontology design. In: Workshop on Social and Collaborative Con-
struction of Structured Knowledge (CKC 2007) at WWW 2007, Banff, Canada (2007)

. Hartmann, J., Palma, R.: OMV - Ontology Metadata Vocabulary for the Semantic Web,

vol. 1.0 (2005), http://omv.ontoware.org/

. Hepp, M., Bachlechner, D., Siorpaes, K.: Ontowiki: Community-driven ontology engineer-

ing and ontology usage based on wikis (2005)

. Klein, M.: Change Management for Distributed Ontologies. PhD thesis, Vrije Universiteit,

Amsterdam (2004)

. Kozaki, K., Sunagawa, E., Kitamura, Y., Mizoguchi, R.: A framework for cooperative on-

tology construction based on dependency management of modules. In: Proceedings of the
International Workshop on Emergent Semantics and Ontology Evolution (ESOE2007) at
ISWC/ASWC2007, Busan, South Korea (November 2007)

. De Leenheer, P., Mens, T.: Ontology Evolution. State-of-the-art and Future Directions. In:

Ontology Management. Semantic Web, Semantic Web Services, and Business Applications.
Springer, Heidelberg (2007)

2

. Muioz-Garcia, O., Goémez-Pérez, A., Iglesias-Sucasas, M., Kim, S.: A workflow for the net-

worked ontologies lifecycle. A case study in FAO of the UN. In: Proceedings of the CAEPIA-
TTIA 2007, Spain. Springer, Heidelberg (2007)

. Muioz-Garcia, O., Kim, S., Iglesias Sucasas, M., Caracciolo, C., Bagdanov, A., Wang, Y.,

Haase, P., Suarez-Figueroa, M., Gomez-Perez, A.: Software architecture for managing the
fisheries ontologies lifecycle. Technical Report D7.4.1, NeOn Consortium (October 2007)
Noy, N., Chugh, A., Liu, W., Musen, M.: A framework for ontology evolution in collaborative
environments. In: International Semantic Web Conference, pp. 544-558 (2006)

Noy, N., Kunnatur, S., Klein, M., Musen, M.: Tracking changes during ontology evolution.
In: International Semantic Web Conference (2004)

Palma, R., Haase, P.: Oyster - sharing and re-using ontologies in a peer-to-peer community.
In: International Semantic Web Conference, pp. 1059-1062 (2005)

Palma, R., Haase, P., Wang, Y., d’Aquin, M.: D1.3.1 propagation models and strategies.
Technical Report D1.3.1, UPM; NeOn Deliverable, November (2007)

Pinto, S.: Ontoedit empowering swap: a case study in supporting distributed, loosely-
controlled and evolving engineering of ontologies (diligent) (2004)

Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD thesis, University of Karl-
sruhe (TH), Germany (August 2004)

Tempich, C.: Ontology Engineering and Routing in Distributed Knowledge Management
Applications. PhD thesis, University of Karlsruhe (TH), Germany (2006)

Tudorache, T., Noy, N.: Collaborative protege. In: Workshop on Social and Collaborative
Construction of Structured Knowledge (CKC 2007) at WWW 2007, Banff, Canada (2007)

http://omv.ontoware.org/

	An Editorial Workflow Approach For Collaborative Ontology Development
	Introduction
	Requirements for Collaborative Ontology Development
	Overview of the Fisheries Ontologies Lifecycle
	Functional Requirements

	A Workflow-Based Collaborative Ontology Development Approach
	Conceptual Models
	Implementation Support

	Related Work on Collaborative Ontology Development
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

