
Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid
Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: ht tp : / /www.elsevier .com/ locate/websem
A holistic approach to collaborative ontology development
based on change management

Raúl Palma a,⇑, Oscar Corcho a, Asunción Gómez-Pérez a, Peter Haase b,1

a Ontology Engineering Group, Departamento de Inteligencia, Artificial, Facultad de Informática, Universidad Politécnica de,
Madrid, Campus de Montegancedo sn, Boadilla del Monte 28660, Spain
b Institute AIFB, KIT, D-76128 Karlsruhe, Germany

a r t i c l e i n f o
Article history:
Available online 30 June 2011

Keywords:
Collaborative ontology development
Ontology changes
Ontology metadata
1570-8268/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.websem.2011.06.007

⇑ Corresponding author. Present address: Poznan Su
ing Center, ul. Dabrowskiego 79a, 60-529 Poznan, Pol

E-mail addresses: rpalma@man.poznan.pl (R. Pa
Corcho), asun@fi.upm.es (A. Gómez-Pérez), peter.haas

1 Present address: Fluid Operations AG, Altrottstr. 31
a b s t r a c t

This paper describes our methodological and technological approach for collaborative ontology develop-
ment in inter-organizational settings. It is based on the formalization of the collaborative ontology devel-
opment process by means of an explicit editorial workflow, which coordinates proposals for changes
among ontology editors in a flexible manner. This approach is supported by new models, methods and
strategies for ontology change management in distributed environments: we propose a new form of
ontology change representation, organized in layers so as to provide as much independence as possible
from the underlying ontology languages, together with methods and strategies for their manipulation,
version management, capture, storage and maintenance, some of which are based on existing proposals
in the state of the art. Moreover, we propose a set of change propagation strategies that allow keeping
distributed copies of the same ontology synchronized. Finally, we illustrate and evaluate our approach
with a test case in the fishery domain from the United Nations Food and Agriculture Organisation
(FAO). The preliminary results obtained from our evaluation suggest positive indication on the practical
value and usability of the work here presented.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Ontology development is transforming from a process tradition-
ally performed by isolated ontology engineers or domain experts
into a process performed collaboratively by mixed teams, who
may be geographically distributed and play different roles in the
process. For example, some domain experts acting as editors may
propose changes in specific parts of the ontologies, while other
domain experts acting as authoritative users may approve or reject
them following a well-defined editorial process. Similarly,
ontology engineers acting as knowledge architects may propose
remodeling parts of the ontologies to follow specific ontology
design patterns, which have to be approved by authoritative users.

Classical ontology engineering methodologies (e.g., METHON-
TOLOGY [1], On-To-Knowledge [2]) do not consider this distributed
setting and propose most of their ontology development activities
and tasks for isolated ontology engineers or domain experts work-
ing locally with their ontologies. This is also the case for most of
ll rights reserved.

percomputing and Network-
and. Tel.: +48 61 858 21 60.
lma), ocorcho@fi.upm.es (O.
e@fluidops.com (P. Haase).

69190, Walldorf, Germany.
the existing ontology development tools (e.g., Protégé,2 TopBraid
Composer3 SWOOP4), which mainly support the single-developer
scenario, where only one user is involved in the development and la-
ter modification of the ontologies. Only in some cases they provide
additions or plugins to support groups of ontology developers work-
ing in collaboration (e.g., Collaborative Protégé5 and Hozo6).

Other more recent methodologies or approaches, such as
DILIGENT [3] and DOGMA-MESS [4], consider that ontologies can
be developed collaboratively in distributed settings. However, they
normally focus on centralized approaches for ontology and change
management, where a main copy of the ontology is maintained and
updated by groups of ontology developers that may work with
local adaptations. More importantly, even though they consider
some methodological aspects involved in collaborative ontology
development, in general they focus less on the varied approaches
followed by different organizations to coordinate this process.
For example, they only propose simple conceptual models describ-
ing how ontology developers may use a shared (aka. main) copy of
ontology, create local adaptations, and then, somehow, other
2 http://protege.stanford.edu/.
3 www.topbraidcomposer.com/.
4 http://code.google.com/p/swoop/.
5 http://protegewiki.stanford.edu/wiki/Collaborative_Protege.
6 http://www.hozo.jp/.

https://core.ac.uk/display/148659658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.websem.2011.06.007
mailto:rpalma@man.poznan.pl
mailto:ocorcho@fi.upm.es
mailto:asun@fi.upm.es
mailto:peter.haase@fluidops.com
http://protege.stanford.edu/
http://www.topbraidcomposer.com/
http://code.google.com/p/swoop/
http://protegewiki.stanford.edu/wiki/Collaborative_Protege
http://www.hozo.jp/
http://dx.doi.org/10.1016/j.websem.2011.06.007
http://www.sciencedirect.com/science/journal/15708268
http://http://www.elsevier.com/locate/websem

Fig. 1. Typical scenarios for the management of ontologies and their changes
during collaborative ontology development.

300 R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314
authoritative users will collect, select and merge the proposed
changes to create a new version of the main copy.

Different organizations may follow different approaches for col-
laborative ontology development. Examples of such collaborative
development processes can be found in international institutions
like the United Nations Food and Agriculture Organization
(FAO),7 which is developing and maintaining large ontologies in
the fishery domain [5], or the World Health Organization (WHO),
which is developing and maintaining large ontologies and
classifications in the medical domain, such as ICD8 (International
Classification of Diseases) or ICPS9 (International Classification for
Patient Safety). Another similar example is the Gene Ontology
(GO) project,10 which addresses the need for consistent descrip-
tions of gene products in different databases.
7 http://www.fao.org/.
8 http://www.who.int/classifications/icd/en/.
9 http://www.who.int/patientsafety/taxonomy/en/.

10 http://www.geneontology.org/.
Fig. 1 identifies a number of representative scenarios for the
management of ontologies and their changes during collaborative
ontology development. The continuous lines represent a perma-
nent (tight) connection between the editors and the centralized
copy of the ontology, whereas the dotted lines represent a tempo-
rary (loose) connection between the editors and the distributed
copies of the ontology. At one end (Scenario A), in a permanent on-
line environment, ontology developers may work collaboratively
using a centralized copy of the ontology. This model is supported,
for example, by WebProtege11 and the more recent iCAT platform.12

At the other end (Scenario B), in a mostly offline environment, they
may collaborate using distributed local copies of the ontology that
are sporadically synchronized, allowing ontology developers to col-
laborate even without a permanent and reliable connection, or if
not enough centralized resources are available. This is supported,
for example, by our collaborative ontology development extensions
in NeOn Toolkit, implemented with a set of plugins13 (described in
detail in Section 6). Hybrid approaches (Scenario C), partly central-
ized and partly distributed, are also possible.

In all these collaborative ontology development scenarios, there
is a need to coordinate the actions of all the developers (for exam-
ple, when do editors want their changes to be reviewed, what kind
of actions can they perform according to their roles, etc.). Therefore,
we need appropriate models, strategies and infrastructure to sup-
port those coordination tasks. This is one of the two major contribu-
tions of our work. Moreover, since the whole collaborative ontology
development scenario is driven by the ontology changes, there is a
need to support the management of those changes in distributed
settings, including their formal representation, manipulation and
propagation. This is the second major contribution of our work.

The remainder of this document is organized as follows: after a
summary of the state of the art (Section 2), we provide a high level
overview of our solution (Section 3). Then, we describe our contri-
butions for collaborative ontology development (Section 4) and for
ontology change management in distributed environments (Sec-
tion 5). Then, in Section 6 we present the technological support
for the work here presented. In Section 7 we present the evaluation
experiments, in Section 8 we summarize and discuss the results.
We conclude in Section 9 and discuss directions for future research
in Section 10.
2. Overview of the state of the art

In this section we briefly discuss the main limitations and
challenges encountered for the core topics of this work, namely,
collaborative ontology development and ontology change manage-
ment. A more comprehensive state of the art of all these activities
can be found in [6].

Previous efforts to support collaborative ontology development
produced relevant methodological and technological results (e.g.,
[7,4,8–16]). However, existing solutions support only a centralized
management of the ontology and its related changes. In some cases
(e.g., [7] and [4]), a shared (aka. main) copy of the ontology can be
adapted or specialized by distributed users; in other cases (e.g., [9]
and [10]), a main copy of the ontology is divided into sub-ontolo-
gies each of them modified by distributed users; and in other cases
(e.g., [8,11–13,15]) there is only a central copy of the ontology that
all distributed users can modify. In every case, changes are applied
and managed in the central copy of the ontology.

Moreover, in general they do not support the processes typically
followed by organizations for the coordination of change
11 http://protegewiki.stanford.edu/wiki/WebProtege.
12 http://sites.google.com/site/icd11revision/home/icat.
13 http://neon-toolkit.org/wiki/1.x/Workflow_Support, http://neon-toolkit.org/wiki/

1.x/Change_Capturing and http://neon-toolkit.org/wiki/1.x/Oystermenu.

http://www.fao.org/
http://www.who.int/classifications/icd/en/
http://www.who.int/patientsafety/taxonomy/en/
http://www.geneontology.org/
http://protegewiki.stanford.edu/wiki/WebProtege
http://sites.google.com/site/icd11revision/home/icat
http://neon-toolkit.org/wiki/1.x/Workflow_Support
http://neon-toolkit.org/wiki/1.x/Change_Capturing
http://neon-toolkit.org/wiki/1.x/Change_Capturing
http://neon-toolkit.org/wiki/1.x/Oyster-menu

14 Epistemic workflows describe the flow of knowledge from one rational agent to
another [16].

15 http://omv.ontoware.org.

R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314 301
proposals, which specifies the type of actions or operations ontol-
ogy editors can perform depending on their role and the state of
the ontology. Some early conceptual efforts were presented in [7]
and [4]. Besides, a notable exception is the work from [14]—and
derivative works—which provided recently a proposal, although
without any technological support.

Furthermore, in many of them (e.g., [7,4,10,11]) there is not
even a formal management of ontology changes (e.g., explicit
representation and propagation). And in summary, there is no inte-
grated approach (and technological support) that addresses all the
previous issues.

In contrast to existing approaches, first, our solution is based on
a formalization of the collaborative development process followed
by organizations for the coordination of change proposals. Second,
while there is a poor management of ontology changes in many
existing solutions, our solution is supported by models, methods
and strategies for change management in distributed environ-
ments. Third, unlike existing approaches that support only a
centralized management of the ontology and its related changes,
our solution supports both a centralized and a distributed manage-
ment. Finally, we provide an integrated approach (and technologi-
cal support), currently not available, which addresses all the
previous issues.

Regarding the management of changes, we limit our discussion
to the main activities that we address: change representation,
change propagation and tool support.

For the representation of ontology changes two main works can
be identified: Stojanovic’s [17] and Klein’s [18]. They classify
changes in a similar manner (atomic or elementary, composite
and complex), where atomic changes refer to operations at the en-
tity level. Some other works in the literature resemble (e.g., [19] and
[20]) or extend (e.g., [21] and [12]) the previous models or provide
partial solutions (e.g., [22–24]). All of these, however, are depen-
dent on the underlying ontology model, which makes them difficult
to integrate or reuse. Besides, even when they classify changes at
different granularity levels, their lower level considers changes at
the entity level (e.g., classes, properties and individuals), instead
of considering the real low level operations that can be performed
in an ontology, which makes them less flexible, less detailed and
more difficult to process. In our work, we propose a change repre-
sentation model that is independent of the underlying ontology
language, and that includes a more fine-grained taxonomy of ontol-
ogy changes in comparison to existing models, which identifies the
real low-level operations that can be performed in an ontology.

With respect to the propagation of changes, it has only been con-
sidered in the past to related ontologies (e.g., [17,25] and [9]), to
ontology individuals (e.g., [26,27]), and to some extent to related
applications ([28]). For the propagation of changes to related ontol-
ogies, existing approaches consider only a central (main) copy of the
ontology that is either replicated (e.g., [17]) or divided into several
component ontologies (e.g., [9]) and where in general, changes are
propagated only in one direction: from the main copy to its replicas.
The only exception is when the ontology is divided into several com-
ponent ontologies, but in this case the management of changes is
centralized. As a consequence, the propagation of changes to distrib-
uted (editable) copies of the same ontology with a distributed con-
trol, are not supported yet. Our work addresses exactly that issue,
enabling a distributed management of the ontology and its changes.

Finally, existing tools (that do not tackle additional collabora-
tive aspects) support different aspects of the change management.
Many of them are focused on the management of ontology versions
(e.g., [29–31]). Nevertheless, some tools address evolution aspects,
such as the effect of changes on dependent applications (e.g., [28]),
the tracking of changes along with their formal representation, and
the propagation task (e.g., [17,32,31]). However, in those cases, the
management of ontologies and their changes is either centralized
or the changes are propagated from a main copy of the ontology
to its distributed non-editable replicas. The technological support
that we provide, integrates our solutions for the management of
changes in distributed environments, including the tracking, repre-
sentation and propagation of changes from any copy of the ontol-
ogy to other copies.

3. Our approach in a nutshell

This paper presents a holistic approach to support collaborative
ontology development in inter-organizational settings. Our work is
based on models, methods and strategies for the management of
ontology changes in distributed environments.

The diagram in Fig. 2 depicts a general overview of the paper
contributions and the relationship between them. In the diagram,
the two boxed areas represent the two research areas that we ad-
dress; the components in the outer box rely on the components of
the inner box. The way the components are related to each other is
illustrated by the arrows.

As presented in the figure, the first major contributions of this
work (described in Section 4) starts with the formalisation of the
collaborative development process as an editorial workflow
(Sections 4.3 and 4.4), which can be described as a special case
of epistemic workflow14 characterized by the ultimate goal of
designing networked ontologies and by specific relations among
designers, ontology elements, and collaborative tasks [33]. The
need for such workflows has also been acknowledged in the past
in other related works (e.g., [13]). Then we focus on the manage-
ment and enactment of such editorial workflows (Section 4.5),
which include the execution of several tasks that have to be car-
ried out to provide a complete solution that supports collabora-
tive ontology development, such as the enforcement of process
constraints. Finally, our contribution includes an integrated infra-
structure for collaborative ontology development (described in
Section 6) that implements all the models, methods and strate-
gies here proposed.

Our second major contribution is the management of ontology
changes in distributed settings (described in Section 5), which is
central to our approach since the whole collaborative ontology
development scenario is driven by them. The contributions here
can be divided into: (i) those related to the representation of
changes (Section 5.1), including how they can be identified, and
at which level of granularity, from high level changes that identify
the basic parameters in which an ontology has changed, including
its metadata, to low level changes that identify the changes that
were produced at the axiom level and which are highly dependent
on the ontology implementation language; (ii) those related to
their manipulation (Section 5.2), including how changes can be
captured or how the consistency of the ontology is ensured after
those changes; and finally, (iii) those related to change propagation
(Section 5.3) in distributed settings. As a fundamental characteris-
tic of our approach, all these contributions on ontology change
management build on OMV15 [34], a metadata vocabulary that
captures relevant information about ontologies such as prove-
nance, availability, statistics, etc.
4. Collaborative ontology development supported by change
management

This section presents our solution to support collaborative
ontology development in distributed settings. It addresses the
main limitations in existing approaches as discussed in Section 2.

http://omv.ontoware.org

Fig. 2. Overview of our contributions and the relationship between them.

302 R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314
In order to achieve our goal, we first identified the most rele-
vant requirements to support collaborative ontology development
in distributed settings, based on the analysis of the processes typ-
ically followed by organizations in the development and mainte-
nance of ontologies (Section 4.1). For this analysis, we considered
different processes and scenarios for collaborative ontology devel-
opment and previous efforts in the state of the art. We will illus-
trate the outcome of this analysis, as well as the models and
strategies proposed, with a concrete example (described in Section
4.2) based on the fisheries ontologies lifecycle from FAO [5]. In par-
ticular, Section 4.3 describes how the collaborative process can be
formalized by means of a collaborative workflow model and illus-
trate it with the particular collaborative process in our running
example. Similarly, in Section 4.4 we discuss how the workflow
model can be represented and implemented in a workflow ontol-
ogy and illustrate it with our running example. Finally, in Section
4.5 we describe the strategies for the management and enactment
of the workflow during ontology development.

4.1. Analysis of collaborative ontology development

As mentioned before, the collaborative development of ontolo-
gies usually follows a pre-defined process that specifies who
(depending on the user role), when (depending on the ontology
state) and how (which actions or operations users can perform)
an ontology can change. However, the details of this process, as
well as the configuration of the collaborative scenario, can vary
from one organization or context to another.

Fig. 1 already presented three representative scenarios for col-
laborative ontology development. In each case, the management
of the ontology and its associated changes is performed in a differ-
ent way, supporting different setups and characteristics of the col-
laborative environment:

(i) In Scenario A (c.f. Fig. 1(a)), ontology and change manage-
ment is centralized. There is only one copy of the ontology,
stored in a central server, which can be edited by all (distrib-
uted) members of the team from their (remote) node. The
change information about the ontology is also stored in a
central registry.

(ii) In Scenario B (c.f. Fig. 1(b)), ontology and change manage-
ment is distributed. There are ‘‘n’’ copies of the ontology,
where ‘‘n’’ is the number of ontology editors working on
their own local copy of the ontology. Change information
is also stored in a distributed manner (e.g., in a local
registry of each member). The local nodes exchange infor-
mation about ontology metadata and synchronize ontology
changes. Changes received from other nodes are applied
locally in the ontology copy to keep the distributed copies
synchronized.
(iii) Scenario C (c.f. Fig. 1(a)) is a hybrid between scenarios ‘‘A’’
and ‘‘B’’. The team of ontology editors can be divided in at
least two different groups. Each group works in an environ-
ment with the characteristics of scenario A. Additionally, the
groups have between them an environment with the charac-
teristics of scenario B. That is, each group has a centralized
ontology server (and metadata provider), which in turn is
treated as the ontology editor’s nodes in configuration B.

Since scenarios B and C are not supported yet by existing meth-
ods and tools as they rely on a distributed management of the
ontology and its related changes (see Section 2), part of our work
was targeted for supporting them.

From this analysis, as well as from previous efforts in the state
of the art (e.g., [12]), we derived a set of requirements [35]. Briefly,
lifecycle requirements address the coordination of the change pro-
posals enabling ontology editors to consult, modify, validate or
publish ontologies depending on their role and the state of the
ontology. Activity requirements deal with the activities required
to be supported, such as edit ontology elements, change state of
elements, etc. Visualization requirements are those concerned with
enabling users to consult the corresponding information generated
by those actions, such as view the change history. Change manage-
ment requirements are related to the representation, capturing,
propagation and notification of changes. Versioning requirement
deals with the identification and tracking of different ontology ver-
sions. Finally, we identified requirements related to concurrency
control, such as the coordination of changes applied in distributed
ontology copies, necessary to support the collaboration among edi-
tors during ontology development.

In the remainder of this section we provide solutions to support
the lifecycle and activity requirements. In Section 5 we address the
management of changes, the management of different ontology
versions and the concurrency control by the synchronization of lo-
cal ontology copies. Finally, in Section 6, we address the visualiza-
tion requirements with our technological support.

4.2. Running example

Ontology developers at FAO are developing an ontology-based
information system to facilitate the assessment of fisheries stock
depletion by integrating the variety of information sources avail-
able. In this context, one of the goals is the development of an
application for the management of fishery ontologies and their
lifecycle.

Several actors are involved in the ontology development pro-
cess, such as, experts in ontology modeling who, are in charge
of defining the original skeleton of the ontology, and ontology edi-
tors, who are in charge of the everyday editing and maintenance
of the ontologies. Ontology editors include subject experts who
know about the domain to be modeled and validators who, be-
sides being domain experts, can move a change to production
state for external availability. Ontology development follows a
well-defined process, which needs to be supported in the engi-
neering environment. This process allows ontology editors to con-
sult, validate and modify the ontology collaboratively, keeping
track of all changes in a controlled manner. Finally, once editors
in charge of validation consider the ontology as final, they are
authorized to release it and make it available to end users and
systems.

4.3. Workflow model

In our approach, we consider the collaborative development
process at two different levels of abstraction: the (ontology) ele-
ment level and the ontology level. In each level, we must model

Draft

To Be Deleted

Approved To Be Approved
Send to be approved Send to approved

Send to
be
deleted

Reject to
approved

Reject to draft Reject to be approved

Update Insert

Delete Delete

Update Update

(SE)

(SE)

(SE)

(SE)

(V)

(V)

(V)

(V)

(SE)

(SE, V) (V)

(V)

Fig. 3. Collaborative editorial workflow at the element level for the running example.

Published
Publish

Approved

Move to
be
approved

Draft
Approval

To Be
Approved

Move to
draft

(V)(-)(-)(-)

Move to draft (-)

Fig. 4. Collaborative editorial workflow at the ontology level for the running example.

16 In a different scenario, the workflow could start with an empty ontology (without
elements), which we could assume that will be by default in the APPROVED state.

R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314 303
the way in which the different elements involved in this process
(roles of designers, states of ontologies and elements, available col-
laborative actions) are related to each other.

Hence, we propose the use of collaborative editorial workflows to
formalize the collaborative ontology development process. In our
solution, we consider that an ontology consists of a set of axioms
and facts, which can relate to entities such as classes, properties
or individuals. These entities constitute the basic ontology ele-
ments that we consider.

The details of the collaborative ontology development process
(the specific roles, actions, etc.) depend on the organization setting.
Therefore, to illustrate our approach, in the rest of this section we
discuss our solution for the particular scenario of our running
example.

4.3.1. Illustration with running example
Figs. 3 and 4 show the two different workflow levels (element

and ontology level) for our running example. States are denoted
by rectangles and actions by arrows. The information in parenthe-
ses specifies the actions that an editor can perform depending on
its role, where ‘‘SE’’ denotes SUBJECT EXPERT, ‘‘V’’ denotes VALIDATOR and
‘‘–’’ denotes that the action is performed automatically by the
system.

The possible states that can be assigned to ontology elements
(see Fig. 3) are the following:

� Draft: this is the state assigned to any element when it passes
first into the workflow, or when it was approved and then
updated by a SUBJECT EXPERT.
� To be approved: once a SUBJECT EXPERT is confident with a change in

DRAFT state, the element is passed to the TO BE APPROVED state and
remains there until a VALIDATOR approves or rejects it.
� Approved: if a VALIDATOR approves a change in an element in the

TO BE APPROVED state, it passes to the APPROVED state. Additionally,
this is the default state for every element of the initial version
of a stable ontology.
� To be deleted: if a SUBJECT EXPERT considers that an element needs

to be deleted, the item will be flagged with the TO BE DELETED state
and removed from the ontology although only a VALIDATOR will be
able to definitively delete it.
� Deleted: this is the state assigned to any element when a VALIDA-

TOR definitely deletes it after its state was TO BE DELETED. Addition-
ally, this is the state assigned to any element when a SUBJECT

EXPERT deletes it after its state was DRAFT. Note that this state is
represented by the doubled circle in the figure.

The ontology state (see Fig. 4) is automatically assigned by the
system (denoted with ‘‘–’’ in the figure), except from the PUBLISHED

state. The ontology state is based on the state of its elements, i.e.,
the state of an ontology is given by the ‘‘lower’’ (less stable) state
of any of its elements. For instance, it can happen that in the same
ontology there are elements in the DRAFT state and elements in the
TO BE APPROVED state, then the state of the ontology is going to be
DRAFT. Hence, ontology states are defined as follows:

� Draft: any change to an ontology in any state automatically
sends it to DRAFT state.
� To be approved: when all ontology elements in an ontology ver-

sion are in the TO BE APPROVED state (or DELETED), the ontology is
automatically sent to the TO BE APPROVED state.
� Approved: when all ontology elements in an ontology version

are in the APPROVED state (or DELETED), the ontology is automati-
cally sent to the APPROVED state. Additionally, this is the default
state of the initial version of a stable ontology.
� Published: only when the ontology is in the APPROVED state, it can

be sent by a VALIDATOR to the PUBLISHED state.

In our running example, the workflow starts after getting a sta-
ble populated ontology that satisfies all the organizational require-
ments. Hence, we assume that the initial state of this stable
ontology (and all its elements) is APPROVED.16

Note that during the workflow, actions are performed either:

� Implicitly: for instance, when a user updates an element, he does
not explicitly perform an UPDATE action. In this case it has to be
captured from the user interface. The action is recorded after
the operation is successfully executed.

304 R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314
� Explicitly: for example, validators explicitly approve or reject
proposed changes. The action is recorded immediately when
the user explicitly performs the action.

As we can see from the previous discussion, the collaborative
ontology development process highly depends upon the operations
performed to the ontology itself (the changes performed by ontol-
ogy editors). Hence, similarly to our change representation model,
we decided to model the workflow elements (roles, states, actions)
using a workflow ontology. Having both models (ontology changes
and workflow) formalized as ontologies facilitates the representa-
tion of the tight relationship that exists between them. For in-
stance, consider a user with role SUBJECT EXPERT that INSERTS a new
ontology class to the ontology. That class will receive automatically
the DRAFT state. All the information related to the process of insert-
ing a new ontology element will be captured by the workflow
ontology, while the information related to the particular element
inserted along with the information about the ontology before
and after the change is captured by the change ontology. Addition-
ally, the workflow process also relies on OMV to refer to ontologies
and users.
Ontology

Person

hasCreator
hasContributor

hasRole

Role

Subject Expert

Validator

Viewer

ChangeSpecification
has

OMV Core Generic Change Ontolog

Action

OntologyAction Entit

Publish

S

A

Re
A

R

S
A

A

performedBy

hasAuthor

From/To PublicVersion

Class Name

ObjectProperty

Range

Domain

Class

subClassOf

InstanceOf

nameIndividual

Fig. 5. Overview of the
4.4. Workflow ontology

The main classes and properties of the workflow ontology
along with the relationships with the other ontologies in our ap-
proach (e.g., OMV and Generic Change Ontology) are illustrated in
Fig. 5. In the figure, the elements above the horizontal line are
generic elements of the workflow ontology that are independent
of the collaborative development process details, while the ele-
ments below the line are specific for our running example (see
below).

The different roles that ontology editors can have are modeled
as individuals of the Role class that is related to the Person class
of the OMV core ontology (a person has a role).

To explicitly model the separation between the possible states
of ontology elements (classes, properties and individuals) and
the possible states of the ontology itself, the State class is special-
ized in two subclasses (EntityState and OntologyState).
Similarly to the roles, the possible values of the states are modeled
as individuals of their respective subclass. Furthermore, the two
subclasses of State allow representing the appropriate relation-
ships at the element and ontology level: to specify that an ontology
Change

EntityChange
Change

...
y

yAction

State

EntityState OntologyState

Delete

end to be
deleted

Insert

Reject to
pproved

ject to be
pproved

eject to
Draft

end to be
pproved

Send to
pproved

Update

Draft

To Be
Approved

Approved

To Be
Deleted

Deleted

DraftOnto

To Be App-
rovedOnto

Approved

Published
Onto

Onto

relatedChange

hasState hasOntologyState

workflow ontology.

R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314 305
element has a particular state, we rely on the class EntityChange
from the change ontology (described in Section 5.1) which is asso-
ciated to a particular ontology element and associate it with sub-
class EntityState; to specify that an ontology has a particular
state, we rely on the class Ontology from the OMV core and asso-
ciate it with the subclass OntologyState. Note that at this point
we are not considering composite changes in our workflow; they
are treated as a sequence of changes at the entity level. Addition-
ally, observe that the state is not assigned to the actual object (e.g.,
ontology element or ontology) but to the referring metadata entity
(entity change or the ontology metadata) for two reasons: first, it is
the actual referring entity that modifies the state of the object; sec-
ond, all this information is managed by the ontology registry that
stores all ontology related metadata but not the ontologies
themselves.

Finally, for the actions there is also a separation between the
possible actions at the element level and actions at the ontology
level. Hence, the Action class is specialized in two subclasses
(EntityAction and OntologyAction). To track the whole pro-
cess (and keep the history) of the workflow, the possible actions
are modeled as subclasses of the appropriate Action subclass.
Similar to the states, the two subclasses of Action also allow
representing the appropriate relationships at the element and
ontology level. To specify that an action was performed over a par-
ticular ontology element, the subclass EntityAction is associ-
ated with class EntityChange. However, as illustrated above
with our running example, actions at the ontology level are usually
performed automatically by the system. The explicit actions at the
ontology level are dependent on the specific workflow details.
Therefore, we do not specify any association between the generic
subclass OntologyAction and class Ontology; associations are
only specified, if necessary, between the explicit actions (at the
ontology level) of the specific workflow and the class Ontology

(see below).
4.4.1. Illustration with running example
As we can see in Fig. 5, the three different roles of our running

example (SUBJECT EXPERT, VALIDATOR, VIEWER) are modeled as individuals
of the class Role.

Similarly, the five possible states that can be assigned to
ontology elements (DRAFT, TO BE APPROVED, APPROVED, TO BE DELETED and
DELETED) are modeled as individuals of the class EntityState

and the four possible states for an ontology (DRAFT, TO BE APPROVED,
APPROVED and PUBLISHED), as individuals of the class Ontology-

State.
Finally, the nine actions that ontology editors can perform over

ontology elements (INSERT, UPDATE, DELETE, SEND TO BE APPROVED, SEND TO

APPROVED, SEND TO BE DELETED, REJECT TO DRAFT, REJECT TO BE APPROVED, REJECT

TO APPROVED) are modeled as subclasses of the class EntityAction.
Additionally, the only explicit action that can be performed to the
ontology (PUBLISH) is modeled as subclass of the class Ontology-

Action. Notice that, as described in the previous section, the ac-
tion PUBLISH may change the version of the ontology. Therefore, it
is associated to the class Ontology to specify the previous and
next public version of the ontology.

Note that in the current implementation of our workflow
ontology, the constraints of the collaborative development process
in our running example are not explicitly declared as part of the
ontology. Those constraints are handled by the strategies for work-
flow management and enactment discussed in next section. The
reasons for taking a procedural approach instead of a declarative
one were mainly of pragmatic nature, as in our case the benefits
of a declarative approach did not outweigh the additional develop-
ment effort. Still, future work in this area should evaluate the
practicability of a declarative approach.
4.5. Workflow management and enactment

The management and enactment of the workflow consists on
the execution of several tasks to support the collaborative ontology
development.

� It requests users to identify themselves with their username
and corresponding role.
� It enforces the constraints imposed by the collaborative work-

flow. That is, every time an ontology editor performs a work-
flow action (e.g., insert new element or submit a change to be
approved), the following tasks are carried out:
(i) To verify that the ontology editor has the appropriate per-

missions. This can be performed by verifying the role of
the user. For instance, the collaborative workflow may con-
strain that only subject experts can insert new ontology ele-
ments (as in our running example).

(ii) To verify the state of the corresponding ontology element (if
any) for the proposed action. For this task, we need to eval-
uate the current state of the element before applying the
requested action. For instance, a change in an ontology ele-
ment may not be approved if it is in draft state.

(iii) To verify the provenance of the action. For instance a subject
expert may not be allowed to submit changes from another
subject expert to be approved. For this task, the author of
the change has to be compared with the current user.

� It supports transaction management capabilities. This means
that if the performed action is rejected, all of its effects have
to be undone.
� It creates and stores the appropriate individuals of the workflow

ontology, if an action is successfully executed.
� It performs all consequences of an action if it is successfully

executed. For instance, if a subject expert submits one change
to be approved, the state of the change has to be updated to
To Be Approved. This task also involves storing the correspond-
ing state of the related element along with the workflow ontol-
ogy individual.

Additionally, the workflow enactment includes the provision of
appropriate interfaces for the users to visualize and perform all the
required actions. For instance, ontology editors (e.g., subject ex-
perts and validators) need to have different views of the ontologies
developed collaboratively, depending on their role.
5. Change management in distributed environments

Our collaborative ontology development approach is based on
the management of ontology changes in distributed environments.
Our solution provides contributions to the representation of ontol-
ogy changes (Section 5.1), their manipulation (Section 5.2) and
propagation to distributed copies of the same ontology (Section
5.3).
5.1. Ontology change representation

A core element in our solution is the representation of changes.
Although we found several approaches for the representation of
changes (e.g., [17–19,21,22]), they have still some limitations
(see Section 2). In particular, they are dependent on the underlying
ontology model, and they only consider changes at the entity level
(classes, properties, individuals). In [36] we presented our proposal
for the representation of changes. In this paper we highlight only
the most relevant parts: we propose a layered model for the repre-
sentation of ontology changes that integrates many of the features
of existing change ontologies (e.g., [17] and [18]). The core of this

0:n hasChange

ChangeSpecification
•

lexOMV v.0.1

[prefix:] Class Name

ObjectProperty
Change

owl2:Class

owl2:Datatype

owl2:NamedIndividual

owl2:ObjectProperty

owl2:DataProperty

0:n fromVersion
0:n toVersion

owl2:Entity

EntityChange

AtomicChange

0:n relatedEntity

CompositeChange

lexOMV v.0.1

owl2:ClassAxiom

owl2:Assertion

owl2:Declaration

owl2:ObjectPro-
 pertyAxiom

owl2:DataPro-
 pertyAxiom

owl2:Axiom

0:n appliedAxiom

omv:Ontology
Generic
 Class

subClassOf

DatatypeProperty

[prefix:] Class Name

DatatypeProperty

 OWL2
Specialised
 Class

prefix: Imported Ontology
 Namespace Reference

Range

Domain

MIN:MAX Cardinality

1:n hasAuthor

1:1 hasPreviousChange

Log 1:1 hasLastChange
• uri
• date
• priority
•••

•
initialTimestamp
lastTimestamp

Removal

Addition

AnnotationPropertyChange

CommentChange

ClassChange

SubClassOfChange

DisjointnessChange

ClassEquivalenceChange

IndividualChange

IndividualEquivalenceChange

InverseObjectPropertyChange

AddSubtree

MergeSiblings

MoveSubtree

SplitClass

ObjectPropertyChange

Agent

omv:Person

Fig. 6. Overview of the OWL 2 change ontology.

306 R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314
model consists of a generic change ontology, independent of the
underlying ontology language that models generic operations in
a taxonomy of changes that are expected to be supported by any
ontology language (based on the ontology components identified
by Gruber [37]). The generic change ontology can be reused and
specialized for specific ontology languages17 (Fig. 6 illustrates the
layered model specialized for OWL 2 – elements of the generic
change ontology are in white whereas elements of the OWL 2 spe-
cialization are in grey). The generic change ontology comprises
three levels for the classification of changes:

� Atomic – the smallest and indivisible operation that can be per-
formed in a specific ontology model.
� Entity – basic operations that can be performed over ontology

elements.
� Composite – group of changes applied together that constitute a

logical entity.

Besides the taxonomy of ontology changes, the generic change
ontology models the provenance of changes, that is, when the
change was made, who made it, and how it was made. Further-
more, the generic change ontology provides the means to support
17 The generic change ontology and two specializations (for OWL 2 and RDFS) are
available at http://omv.ontoware.org/.
not only the tracking of changes but also the information that iden-
tifies the original and the current version of the ontology after
applying the changes.

The generic change ontology has been implemented as an
extension of the OMV ontology metadata model, since we consider
ontology changes as a special kind of ontology metadata.

5.2. Ontology change manipulation

The manipulation of changes includes supplementary methods
and strategies that support the management of changes in distrib-
uted environments.

5.2.1. Ontology change capturing
Changes in ontologies need to be captured and stored in a cer-

tain format. The definition of the change ontology presented in the
previous section, allows storing changes about a certain ontology
in a machine-understandable format. However, there should be
appropriate methods to capture the changes in the evolving ontol-
ogy, such as information gathering and data encoding, and to store
them for future references.

In a controlled scenario where several ontology engineers are
working collaboratively on a set of ontologies, the editing activities
are performed directly using the ontology editor interface. Thus,
the process of capturing changes can be described in the following

http://www.neon-project.org/

R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314 307
steps: first, a change in an ontology from the ontology editor (Step
1), fires an ontology change monitor (Step 2). Then, in Step 3, the
monitor calls an ontology change processing component, responsi-
ble to collect all the information about the change (e.g., author of
the change, time of the change and type of change). Next, in Step
4, the collected information is passed to the ontology change enco-
der where the change is represented according to the change
ontology by creating the corresponding individual(s). Finally, this
change individual(s) is stored in an ontology registry for future
processing and propagation (Step 5).

Note that the task of storing a change individual involves
additional subtasks, such as updating the information of the chro-
nological order of changes and the propagation of changes to re-
lated entities. In our solution, such tasks are carried out by the
ontology registry system.

5.2.2. Ontology version management
There are different definitions and understandings of what

ontology versioning is (see [6]). For this work, we consider ontol-
ogy versioning as a mechanism to keep track of ontology changes
and to identify and maintain different variants of ontologies and
their dependencies, with support to undo and redo operations
(e.g., rollback to a previous variant).

To keep track of ontology changes we generate a log that main-
tains the history (and order) of applied changes as a sequence of
individuals of our proposed change ontology. The management of
that ontology meta-information (applied changes) is the responsi-
bility of the ontology registry, which is in charge of the administra-
tion of all the ontology related metadata (as described below).
Furthermore, the information about the precise changes performed
can be used to easily compute the difference between variants or
to implement a multiple undo and redo mechanism.

Nevertheless, as it has been noted in the past (e.g., [38]), the is-
sue of identifying the different variants (versions) of an ontology is
not a trivial one. For instance, even the OWL ontology language it-
self did not provide the means to identify and manage multiple
versions and physical representations of one ontology until the lat-
est release of OWL 2, where this is partially addressed. So, even
though ontologies are supposed to be identified by a URI (as
OWL 2 has just been released), in practice different versions of
an ontology carry the same logical URI. Also as we noted before,
typically ontologies either do not provide any version information
at all or the ontology editors explicitly do not want to change the
version of the ontology after making some changes.

However, since we are considering a controlled environment
(typical within an organizational setting) where we are logging
changes on the ontologies as they occur, we can assume that we
will always have the version information. Hence, our solution is
based on the identification of ontologies that we proposed in the
specification of OMV (see [39]) which consists of a tripartite iden-
tifier: the ontology URI, the ontology version (if present), and the
ontology location. We also rely on OMV for representing the rela-
tionship between the different ontology versions (e.g., prior ver-
sion and compatible with). Furthermore, the specific set of
changes from one ontology version to the next one is captured
by the change representation model (described in 5.1) and main-
tained by the distributed registry with the rest of the ontology re-
lated metadata.

Therefore, in our scenario, after a first version of an ontology is
obtained, this will normally enter into a maintenance phase in
which it could be modified for several reasons. This phase normally
follows a well-defined process for the coordination of changes (e.g.,
who can propose or approve changes, and when, depending on the
state of the ontology) and the approval of a new ontology release
(e.g., a whole new version or an update of the current version). Par-
ticularly, in our solution, the first stable version (version 1) of an
ontology (the ontology that satisfies all requirements) is consid-
ered the first approved ontology (which in some cases is also pub-
lished in the Internet). The first change to that version will
automatically create a new version, with a different version infor-
mation (N + 1), unless the editor explicitly specifies that the mod-
ified version will not become a new version; in this case, the
modified version will keep the same version information (N). In
any case, this (unapproved) version can receive many changes
(by many ontology editors) without changing the version informa-
tion until it becomes approved. Then, an authorized editor may
want to publish this approved ontology version, and decide to
either keep the version information or to specify a new one.

Note that in a distributed scenario, where ontology editors can
work with local copies of the same ontology, the same new version
can be created offline by two or more editors after applying some
changes to the same base ontology. These copies will be synchro-
nized once changes are propagated when they eventually go on-
line, as described in Section 5.3.

5.2.3. Ontology change storage and maintenance
As we already mentioned before, the storage and maintenance

of the change information is the responsibility of an ontology reg-
istry. The registry stores and manages ontology metadata informa-
tion which includes information about changes. Hence, in our
solution, the registry implements the following features for the
management of changes (based on the models, methods and strat-
egies described through this section):

� Stores the change history (log) for different ontologies, i.e., set
of individuals of our change ontologies.
� Maintains the chronological order of changes. The set of individ-

uals is maintained in a linked list, where each change individual
is linked to the previous one.
� Supports different versions of ontologies at different locations.
� Provides access and advanced search capabilities to retrieve

changes (based on the change representation model).
� Propagates changes to support, for instance, the synchroniza-

tion of distributed copies of ontologies or the update of ontol-
ogy related entities, e.g., metadata.

5.3. Ontology change propagation

Ontology change propagation is another task identified by most
of the ontology evolution approaches and refers to the activity of
updating all of the ontology dependent artifacts ([17]). As we dis-
cussed in Section 2, there are several limitations in this area. In
general, existing approaches (e.g., [17,25,9,26,27]) consider only
the propagation to related ontologies and individuals. Besides, for
the propagation of changes to related ontologies, these approaches
consider only a central (main) copy of the ontology that is either
replicated or divided into several component ontologies and, in
general, changes are propagated only in one direction: from the
main copy to its replicas. The only exception occurs when the
ontology is divided into several component ontologies, but in this
case the management of changes is centralized.

Hence, in this section we consider the propagation of changes to
distributed ontology copies, which supports a distributed manage-
ment of changes and the propagation of changes from any copy of
the ontology to other copies.

5.4. Change propagation to distributed copies of an ontology

One of the goals of propagating ontology changes in a distrib-
uted setting is to keep distributed copies of the same ontology syn-
chronized. In order to propagate changes, first we need to have

308 R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314
those changes stored in an appropriate system. In the previous sec-
tion, we presented our solution for capturing ontology changes.

Once the required changes are represented in a machine-under-
standable format, the system can propagate them to the distrib-
uted copies of the ontology. There are two possible approaches
for the propagation: push or pull. The benefits and disadvantages
of both approaches have already been analyzed (e.g., [17]). Since
we are considering a distributed environment where we cannot
guarantee the availability of nodes, we propose a combination of
a pull and push mechanisms that we call synchronization. The syn-
chronization is based on the time when the changes were origi-
nally applied (timestamp). Consequently, it is important that the
distributed nodes have their system times synchronized (e.g., with
a time server) and that the timestamps have a high precision (to
avoid many changes occurring at the same time).

For the pull mechanism, we propose that, periodically, nodes will
contact other nodes in the network to exchange updated informa-
tion. For this task, in addition to the changes themselves, i.e., indi-
viduals of the change ontology in chronological order, each node
maintains in its local log explicit information about (i) which
ontologies the node is tracking, (ii) the last change it knows for
each of the tracked ontologies and (iii) the set of URIs of the
changes applied to each ontology (version). Note that, if the local
node does not have yet any change information about a tracked
ontology, the last change known by the local node for that ontology
is equivalent to null, and the set of URIs of the changes applied to
that ontology is an empty set.

During the pull mechanism, the following rules apply: (i) nodes
can only update their local registry (log), and (ii) nodes can pull
changes applied to ontologies from any remote node. The reason
for (i) is that each node can only update the information it owns.
Besides, as each node performs the same pull mechanism periodi-
cally, if the contacted remote node has an outdated information,
eventually it will contact a node with updated information and
modify its own information accordingly.

So, the process that takes place when node x contacts node z is
as follows:

For each ontology that is tracked in both nodes x and z, the first
step is to compute the difference between the set of URIs of the
changes applied to the ontology (e.g., Oi) in the remote node z
and the corresponding set in the local node x. If the difference is
the empty set, the set in x is either (i) equal or (ii) a superset of
the corresponding group in z. If the difference is not the empty
set, at least one of the changes in z is not in x, i.e., (iii) x is not syn-
chronized with z.18

Case (i) indicates that nodes are synchronized with each other
and, therefore, the local node x does not have to do anything.

In case (ii), the local node x knows about all the changes that the
remote node z knows, but additionally it also knows about other
changes. Hence, following the rules described above, x does not
have to do anything.

In case (iii), the remote node z knows about one or more
changes that the local node x does not know about. Hence, the
local node x retrieves from z all the unknown changes (pull
propagation), i.e., the changes corresponding to the URIs of the
computed difference between z and x. Then, a local conflict detec-
tion mechanism should determine whether there is any change
that is conflicting with the current changes. Conflicts may be de-
tected on a syntactic level (when the same entity is affected by
changes from different users), or on a semantic level (when the
combination of changes from different users results in a logical
inconsistency) [40]. In case there are conflicting changes, a con-
flict resolution mechanism will be responsible for resolving them.
In the simplest case, this mechanism removes the conflicting
18 x \ z = ; or x \ z = x (x is a subset of z) or x \ z = subset of x and subset of z.
changes from the set and notifies the presence of the conflict
(see below). Note that entity and composite changes must be
treated as atomic operations. For instance, in an OWL 2 ontology,
the entity change ‘‘Add Individual’’ will be in conflict if any of its
two corresponding atomic changes (‘‘Add Declaration’’ and ‘‘Add
ClassMember’’) is in conflict.

Next, for each change Ci, x registers it in its local log. However,
unlike the normal logging operation described in Sections 5.2.1 and
5.2.3, Ci is not necessarily appended at the end of the local log.
Instead, Ci is placed at the corresponding position in the chronolog-
ical order. That is, Ci is placed after the last change whose time-
stamp is equal-to or older than Ci timestamp, before the first
change whose timestamp is newer than Ci timestamp. Besides,
the pointer to the last change in the local log is not updated unless
Ci is actually added at the end of the local log. Note that Ci is reg-
istered with its original information (e.g., author, timestamp and
state) except from the link to its previous change, which may need
to be modified after merging changes from different nodes. You can
further observe that the unknown changes can be processed in any
order. However, it would be advisable to process them in chrono-
logical order, starting with the first (oldest) unknown change, in
order to minimize the modifications of the previous change
information.

Hence, for each change, x performs the following tasks: first, it
determines the corresponding previous change of Ci (PCCi

) in the
local log (the last change whose timestamp is equal-to or older
than Ci timestamp). Thus, the following situations can occur:

� PCCi
= null.

� PCCi
= LCOi

, where LCOi
is last change registered in the local log

for Oi, i.e., the change applied to Oi with the newest timestamp.
� PCCi

– null and PCCi
LCOi

.

Second, x identifies the current next change of PCCi
(NCPCCi

) in
the local log (the first change whose timestamp is newer than Ci

timestamp). Thus, the following special situations can occur:

� If PCCi
= null, NCPCCi

= null if local log for Oi is empty or NCPCCi
=

first change in the local log (FCOi
).

� If PCCi
= LCOi

, NCPCCi
= null.

Finally, x adds Ci in the local log between PCCi
and NCPCCi

. As a
result, Ci will be registered as follows:

� At the beginning of the local log if PCCi
= null.

� At the end of local log if PCCi
= LCOi

.
� Somewhere in the middle of the local log if PCCi

– null and PCCi

LCOi
.

Note that the last change in the local log is not updated after
registering the change except when PCCi

= LCOi
(the change was

registered at the end of the log), or when the local log for Oi was
empty.

Fig. 7 illustrates the process described above. It depicts the logs
for ontology O1 in nodes x and z before and after the synchroniza-
tion. In the figure, the time when the change was originally applied
is denoted by t-i; a change with timestamp t-i was applied after a
change with timestamp t-j if j < i. As we can see in Fig. 7(a), before
the synchronization, node x has five changes, while node z has se-
ven changes. When x contacts z, the synchronization process calcu-
lates the difference between the remote log and the local log. In
this example, five changes in z are unknown by x and, conse-
quently, x retrieves them from z. Assuming none of these changes
is conflicting, then, each of them is registered in the local log at the
corresponding position in the chronological order. In Fig. 7(b), after
the synchronization, the log in x has 10 changes. This example

Node x Node z
O1
Log

O1
Log

C-i: Change i
t-j: Time Stamp j;
 t-j<t-k if j<k

LC

LC

LC: Last Change

C-a t-1
C-b t-2
C-e t-5
C-f t-6
C-m t-10
C-n t-11
C-w t-20

C-k t-8
C-r t-15
C-s t-16

C-e t-5
C-f t-6

(a) Before synchronization.

Node x Node z
O1
Log

O1
Log

LC

LC

C-a t-1
C-b t-2

C-a t-1
C-b t-2
C-e t-5
C-f t-6

C-e t-5
C-f t-6

C-k t-8
C-m t-10
C-n t-11

C-m t-10
C-n t-11

C-r t-15
C-s t-16
C-w t-20

C-w t-20

C-i: Change i
t-j: Time Stamp j;
 t-j<t-k if j<k
LC: Last Change

(b) After synchronization.
Fig. 7. Illustration of the synchronization process. Logs for ontology O1 in nodes x
and z before and after synchronization, if changes are not conflicting.

19 http://www.neon-toolkit.org/.
20 http://ontoware.org/projects/oyster2/.

R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314 309
illustrates the three possible scenarios described above, i.e.,
changes placed at the beginning, at the end, or somewhere in the
middle of the local log. Finally, note that before the synchroniza-
tion, both x and z knew about changes C-e and C-f. For instance,
these two changes were originally applied in a third node, and both
x and z have previously synchronized with this node.

The mechanisms for the identification and resolution of con-
flicts are out of the scope of this paper. However, our strategy
allows minimizing conflicts by running the synchronization pro-
cess periodically in an automatic manner. Besides, the complete
description of changes kept in the logs can be used in conflict res-
olution mechanisms to detect conflicts or to propose resolution
strategies (e.g., based on the timestamp of the conflicting changes).
We refer the reader to [41] for a discussion on how to deal with
some potential conflicts.

The following observations can be drawn: first, note that for this
process it is essential to have the appropriate support to retrieve
only the required changes instead of the complete list in order to
make the process as efficient as possible.

Second, the registration of each change must be processed in a
serialized manner. For instance, if a local node applies a new
change while registering a change from a remote node, the new
change will be queued for later processing.

Third, the periodicity of the synchronization process must be
configurable. Imagine, for instance, a situation where an ontology
editor does not want to update (for some reason) his local copy
of the ontology with changes from other nodes. Having the possi-
bility to configure the periodicity of the process and even to stop it,
if necessary, would solve this problem.

Fourth, if for some reason the timestamps of the changes are not
available, the following additional considerations are needed: the
local node has to process the unknown changes in order, starting
with the first (oldest) unknown change. Additionally, each change
has to be placed in the same location as in the remote log. That is,
after the addition of Ci, the previous change of Ci will be the same in
the local log as in the remote log (PCCi

= the original value of the
object property hasPreviousChange of Ci). The reason is that,
due to the distributed nature of the environment considered, nodes
can synchronize with other nodes in a totally unpredictable man-
ner, i.e., nodes contact other nodes in different order and nodes
can leave or enter the network. As a consequence, when a local
node contacts a remote node, its local log could have some infor-
mation not available in the remote log, some information also
available in the remote log, and some missing information from
the remote log. Hence, after the synchronization, the local log
can have changes in a different order, but it will have all the
changes of the remote node.

Finally, we propose an optional push mechanism during the syn-
chronization process in which nodes push (periodically) their
changes to a specific node in the network so that if the node goes
offline before other nodes pull the new changes, the node changes
are not lost or unavailable during the node down time. Note that
the longer changes from one node are unavailable, the higher the
probability of conflicts with changes in other nodes. Hence, pushing
changes to a particular node will minimize those problems. The
process for pushing changes is the same as the one described for
the pull mechanism, except that the roles of the nodes are inverted:
the push (remote) node is treated as the local node, and the local
node is treated as the remote node in the process described.

Notice that the strategies described above deal only with the
propagation of changes in the domain ontology, that is, for individ-
uals of the change ontology. The propagation of workflow ontology
individuals is done by retrieving and processing the list of work-
flow actions in chronological order from the remote node, applying
locally those actions that are not present in the local node. Apply-
ing those actions involves creating and storing the appropriate
individuals of the workflow ontology and performing all the conse-
quences of an action, such as changing the state of the associated
changes, as described in Section 4.5.

6. Technological support for collaborative ontology
development in distributed environments

The models, methods and strategies proposed in this work for
collaborative ontology development and change management in
distributed environments have been implemented within the
NeOn Toolkit19 by means of a set of plugins and extensions. A high
level conceptual architectural diagram of the components involved
is shown in Fig. 8.

6.1. Distributed registry

Ontologies are stored within a repository and their metadata is
managed by the distributed registry Oyster20 [42]. As an ontology
registry, it provides services for storage, cataloguing, discovery, man-
agement, and retrieval of ontology (and related entities) metadata
definitions. To achieve these goals, Oyster implements OMV as a
way to describe ontologies and related entities, supporting the ex-
change and re-use of ontologies and related entities (e.g., advanced

http://www.neon-toolkit.org/
http://ontoware.org/projects/oyster2/

Fig. 8. Conceptual architecture for the collaborative ontology development support.

310 R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314
semantic searches of the registered objects) and providing services
to support the management and evolution of ontologies in distrib-
uted environments.

The metadata includes information about ontologies and users
(represented using OMV core), the changes to the ontology (repre-
sented using the generic change ontology and its specializations)
and about the actions performed (represented using the workflow
ontology). For each change, the state is also kept to support the col-
laborative editorial workflow. Oyster implements the strategies
described in Section 5.2. So, when a new change is registered into
an Oyster node, Oyster automatically updates the log history,
keeping track of the chronological order of changes. In particular,
it (i) gets the last registered change (using the ‘‘Log’’ class); (ii) adds
Fig. 9. Draft view in the NeOn Toolkit. The view (right pane of the window) illustrates th
pane of the view shows the list of changes in the log, whereas the bottom pane shows
it as the previous change of the current one; (iii) updates the ‘‘Log’’
class to point to the current change.

Additionally, Oyster implements the strategies for the propaga-
tion of changes to distributed copies of the ontology described in
Section 5.4, thus allowing the notification of new changes to ontol-
ogy editors. Oyster implements the synchronization process as fol-
lows: nodes periodically contact other nodes in the network to
exchange updated information (pull changes) and, optionally, they
can push their changes to a specific node (called the push node) so
that if a node goes offline before all other nodes pull the new
changes, the node changes are not lost.

6.2. Change capturing components

Once the ontology editor specifies that he wants to monitor an
ontology, changes are automatically captured from the ontology
editor by a change capturing plugin. This plugin implements the
methods and strategies presented in Section 5.2 for the capturing
of ontology changes and the maintenance of different ontology
versions.

This plugin is also in charge of applying changes received from
other clients to the same ontology after Oyster synchronizes the
changes in the distributed environment (see previous subsection).
Finally, this plugin extends the NeOn Toolkit with a view to display
the history of ontology changes.

6.3. Workflow management and enactment component

In our implementation, this component implements the
strategies described in Section 4.5. It (i) takes care of enforcing
the constraints imposed by the collaborative editorial workflow,
(ii) creates the appropriate action individuals of the workflow
e collaboration of three ontology editors (2 subject experts and 1 validator). The top
the details of the selected changes.

Table 1
Metrics and criteria for characteristics evaluated in experiment.

Metric Criteria

Adequacy of the change
representation model

From a set of typical changes performed by ontology editors, to verify that each change could be represented by our model and
that it captured all the information required by the ontology editors

Adequacy of the workflow model To analyze if ontology editors were able to perform all of the required workflow actions and that each action could be represented
with our model capturing all the information required by the ontology editors

Effectiveness of the system From a set of tasks performed by ontology editors, to analyze the percentage of tasks completed, the ratio of successes to failures
and the number of features or commands used

Efficiency of the system From a set of tasks performed by ontology editors, to analyze the time to complete a task, the time to learn how to use the system,
the percentage or number of errors and the frequency of help or documentation use

User satisfaction Measure software quality from the end users point of view, including the five SUMI dimensions (efficiency, affect, helpfulness,
control and learnability) and the collaborative ontology development process perception

R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314 311
ontology and (iii) registers them into the distributed registry
ensuring a transactional support.

6.4. Ontology editing and visualization components

To support the workflow activities we rely on the NeOn Toolkit,
which comes with an ontology editor that allows the editing of
ontology elements. Additionally, the NeOn Toolkit is extended with
a set of views that allow editors (i) to visualize the appropriate
information of ontologies developed following a collaborative edi-
torial workflow and (ii) to perform (as described in 4.3) the appli-
cable workflow actions (approve, reject, etc.), depending on their
role. There are four views21: Draft view, Approved view, To Be Ap-
proved view and To Be deleted View. Each view is organized in
two vertical panes. The top pane displays the list of changes in the
log along with their most relevant information, such as the URI of
the modified ontology, type of change, related entity, author, date
and time, the status and last action (according to the workflow) asso-
ciated to the change. The bottom pane shows all the details of the
changes selected in the top pane, that is, a serialization of the change
ontology individuals. Additionally, each view provides different but-
tons that allow ontology editors to perform the applicable workflow
actions (e.g., send to be approved and reject to draft). Fig. 9 illus-
trates the draft view.

For a detailed description on how our framework can be config-
ured to support the scenarios identified in Section 4.1, we refer the
reader to [6].
7. Evaluation experiment

We have conducted an experiment in a real life scenario at the
Food and Agricultural Organization (FAO) for evaluating the usabil-
ity and performance of our contributions. Besides, our conceptual
models have been evaluated using specific criteria such as applica-
bility, completeness or adequacy. Because of space constraints we
present here only an overview of the experiment conducted, and in
Section 8 we discuss some of the relevant results of the performed
evaluation. For a complete description of the evaluations con-
ducted we refer the reader to [6].

Following the phases considered in most software experimenta-
tion approaches [43–45], the experiment was performed in three
consecutive phases. First, during the plan phase, the definition
and design of the experiment was described, including the motiva-
tion, constraints, goals, beneficiaries and the experiment subject as
well as the relevant characteristics, metrics and criteria, the data
collection and analysis processes. Then, during the experiment
phase, the execution of the experiment was described, including
the particular configuration of the collaborative infrastructure
and the software used as well as the description of the users in-
21 Subject experts can see the first two views while validators can see the last three.
volved, the activities they had to carry out and the time needed
for the overall experiment. Finally, during the analysis phase, the
experiment results were analyzed.

Table 1 summarizes the characteristics evaluated during the
experiment along with the applied metrics and criteria. Note that
for measuring the user satisfaction, we used as basis the Software
Usability Measurement Inventory22 (SUMI) which is a rigorously
tested and proven method of measuring software quality from the
end users point of view [46].

In summary, a team of three representative ontology editors,
each playing one of two roles (subject expert, validator), worked
collaboratively on the maintenance of the species ontology sche-
ma, one of the most frequently used fishery ontologies at FAO.23

Following FAO priorities and time constraints, the infrastructure
was configured as the scenario A described in Section 4.1. In partic-
ular, the configuration consisted of three clients, each running the
NeOn Toolkit extended with the registry (Oyster), change manage-
ment and collaboration plugins, and one server running Oyster (in
server mode) and the NeOn collaboration server. The latter is soft-
ware component that allows distributed users (running the NeOn
toolkit) to remotely access, browse and edit concurrently a central-
ized copy of an ontology.

After a brief introduction to the system (30 min), editors fol-
lowed a detailed and personalized guide of the tasks they had to
perform. In a nutshell, each subject expert (SE) had to perform
six main tasks while the validator (V) had to perform three main
tasks, as follows:

� Every ontology editor was requested to configure and start the
collaboration support within his NeOn toolkit (T1).
� Next, each subject expert was requested to make several

changes to the ontology concurrently (SE’s-T2). The chosen
changes were 34 (17 changes for each SE) realistic modifica-
tions to the ontology including real information that were
defined in collaboration with FAO experts. Examples of those
changes are:
– To add Individual 31005–10001 (species).
– To add Individual 31005–10000 DataProperty hasCodeAl-

pha3 value: DCR. Type: string.
– To add Individual 31005–10001 DataProperty hasNameSci-

entific value: Pterodroma wrong macroptera. Type: string.
– To add Root Class Speciation.
– To add ObjectProperty hasScientificNameAuthor.
� Then, subject experts had to visualize the results of their

changes and analyze the information provided by the system
(SE’s-T3).
� Next, subject experts were requested to submit their changes to

be approved (SE’s-T4).
22 http://sumi.ucc.ie/index.html.
23 http://aims.fao.org/website/Ontologies-/sub2#species.

http://sumi.ucc.ie/index.html
http://aims.fao.org/website/Ontologies-/sub2#species

312 R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314
� Then, the validator was requested to analyze the changes per-
formed and to approve some of them and reject the rest (V-T2).
� The subject experts were then requested to perform some addi-

tional actions according to the workflow to test the possible
subject expert actions (e.g., delete a rejected change and modify
an approved change) (SE’s-T5 and T6).
� Finally, the validator was also requested to perform some addi-

tional actions in order to test the possible validator actions (e.g.,
reject to be approved a change and delete an approved change)
(V-T3).

During the experiment the tester was taking note of the behav-
ior of the editors, their questions and problems, and at the end of
the experiment, each editor fulfilled an online survey consisting
of 60 questions (50 of the standard SUMI questionnaire and 10 spe-
cific for the collaborative ontology development).24
8. Evaluation summary and discussion

As a general conclusion we can say that the results of the exper-
iment were positive. In particular, they showed that:

� Our models (change representation, workflow model) are ade-
quate with respect to the ontology editors needs. That is, repre-
sentative changes and workflow operations from our use case
could be captured and represented correctly by our models
along with their required information.
� The overall system effectiveness was positive. Ontology editors

completed 64 out of the 68 specific tasks (94%) that were
grouped in the 15 main tasks introduced in Section 7. However,
the log showed that some editors performed other additional
tasks (i.e., they added 13 additional changes) that were not in
the guide. Additionally, there was a 90% rate of changes logged
correctly (3 out of the 30 changes created from the guide were
logged twice due to a limitation in the NeOn collaboration ser-
ver – see [6]). Moreover, we obtained a 100% rate of success of
the workflow management and enactment functionality, that is,
for each of the 73 actions completed from the guide (SE1 per-
formed 17 implicit actions and 20 explicit ones, SE2 performed
13 implicit actions and 16 explicit ones and V1 performed 7
explicit actions), the workflow action was correctly created,
represented and registered and it had the expected conse-
quences. Finally, 90% (18 out of 20) of the features of the infra-
structure were tested during the experiment (as a result of the
scenario setup). These numbers provide positive evidence with
respect to the effectiveness of the infrastructure.
� The efficiency of the system was in general satisfactory. A posi-

tive point is that the time users required to complete their tasks
was better than with their previous approach (see results of
question 1 of the part of the survey specific to collaborative
ontology development in [6]), providing positive evidence with
respect to the efficiency of the infrastructure. Regarding the fre-
quency of help use, users asked regularly for assistance during
the experiment. This is reasonable taking into account that they
had only a brief introduction to the collaborative infrastructure
(and the experiment) (30 min), in addition to the fact that they
did not use the NeOn toolkit frequently. Moreover, after using
the system for some minutes, users learned how to use most
of the system features.
24 Online survey at http://www.oeg-upm.net/files/UsabilitySurvey/survey.htm.
Guides, setup files and results of the experiment available at http://www.oeg-
upm.net/files/material/experimentData.zip.
Moreover, the results of the survey to measure user satisfac-
tion showed that users were in general satisfied with the infra-
structure and generally agreed on its usefulness and correctness.
However, even though the results of the experiment provide an
indication of the real value and practical usability of the models,
methods and strategies proposed in this work, additional
experiments with more users will be needed to draw full
conclusions.

Ontology editors liked the main features of the system (e.g., the
integrated view of the workflow and the management of changes
in a collaborative environment) as we can see from the feedback
received in the textual answers. For example, some textual an-
swers regarding the best features are: ‘‘Seeing changes of others’’,
‘‘A unified view of everything happening in the workflow’’, ‘‘Great
capability and real time update’’.

The overall results for each of the five SUMI dimensions have a
similar pattern. In each case, only around one fourth (7 out of 30)
of the total answers were negative, another fourth (approximately
8 out 30) were undecided and at least half of the answers (15 out of
30) were always positive.

Nevertheless, during the experiment and as part of the analysis
of the results, we also learned important lessons. For instance, we
found out that sometimes users were interested to see only specific
changes (e.g., from specific users and from a specific type), in
specific order, or grouped by some criteria, instead of having the
complete history of changes in chronological order (as it is at this
moment). Related to this issue is that of the granularity of changes:
the change log captures the changes as performed in the ontology
editor, where a set of multiple changes may reflect a change
that – on the level of the user intent – should be a single composite
change. Such aggregation or grouping into composite changes is
currently not possible in our implementation. Another interesting
observation is that users wanted to have a quick view of the
changes related to a specific ontology element instead of having
again a complete list of changes. From these (and other)
observations we got some recommendations on how to improve
our infrastructure, specifically at the GUI level. First we should
improve our views with additional features such as sorting, group-
ing, filtering, and aggregating. Second, we should also add new
user-friendly features to our interfaces, such as the ability to select
several changes in one click or refreshing automatically the views
when opening them. Finally, we should provide a tighter link
between the ontology navigator and the information displayed in
our views.
9. Conclusions

In this work we have presented our solution to support collab-
orative ontology development based on the management of ontol-
ogy changes in distributed environments.

For our contribution to collaborative ontology development,
first, we address different collaborative scenarios, typical in an
organizational setting, where the management of the ontology
and its related changes can be centralized, distributed or a hybrid
between both of them. So, unlike existing approaches that support
only a centralized management, we provide novel strategies to ad-
dress scenarios in which distributed ontology editors can work
with a local copy of the ontology, while our solution takes care
of synchronizing the different copies by means of the change prop-
agation strategies we developed.

The benefit is that we provide a more flexible solution, compared
to existing approaches, which can address different organizational
needs and limitations. For example, in many cases, ontology editors
may not be able to have a permanent or reliable connection to a cen-
tral server to work with an ontology. Similarly, other well known

http://www.oeg-upm.net/files/UsabilitySurvey/survey.htm
http://www.oeg-upm.net/files/material/experimentData.zip
http://www.oeg-upm.net/files/material/experimentData.zip

R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314 313
problems of centralized approaches (e.g., performance, mainte-
nance and resources) can be avoided by using a distributed control.

Second, unlike most existing approaches, we focus on the pro-
cess followed by organizations for the coordination of the change
proposals. We propose to formalize this process by means of a col-
laborative editorial workflow model. Further, this model was
implemented in a workflow ontology by reusing knowledge mod-
eled by OMV and our change ontology.

The benefits of having a workflow ontology is that it allows the
formal and explicit representation of the workflow knowledge in a
machine-understandable format, that can be easily integrated with
other models (e.g., our change representation model). In particular,
it allows to represent the tight relationship that exists between the
workflow elements and the ontology changes. Besides, having the
history of the workflow as individuals of an ontology allows
reusing existing ontology-driven technologies for the processing
of the workflow information (e.g., propagation mechanisms and
reasoning).

Additionally, we propose strategies for the management of the
collaborative ontology development process. We identify the set
of tasks that have to be carried out, including those to enforce
the constraints specified by the collaborative development process,
and propose strategies to deal with them.

Our contributions also include an integrated infrastructure
implemented within the NeOn Toolkit by means of a set of plu-
gins and extensions that support collaborative ontology develop-
ment. It relies on the distributed ontology registry Oyster for the
management of ontology changes in distributed environments. In
contrast to existing solutions, it supports a formal collaborative
development process that coordinates the proposal of ontology
changes and a completely distributed control for the manage-
ment of changes.

With respect to the management of changes, we have focused
on two main activities: representation and propagation.

First, for the representation of ontology changes, we provide a
layered model that consists of a generic change ontology indepen-
dent of the underlying ontology language, which can be reused and
specialized for different ontology languages. Our model considers
ontology changes at the lowest level of granularity (the real atomic
operations) instead of at the entity level like other existing ap-
proaches. Since information about changes in ontologies is a type
of ontology metadata, we implemented our change ontology as
an extension of OMV. Additionally, our model integrates many of
the relevant features of existing approaches for describing ontol-
ogy changes, but its novelty lies in its language-independent ap-
proach and finer granularity level of changes. Our contribution
also includes the development of two extensions for two different
ontology languages (OWL 2 and RDFS).

A language-independent model that can be easily extended fos-
ters its reusability and interoperability between different applica-
tions and scenarios, and a finer granularity level for the
classification of ontology changes supports a more efficient pro-
cessing of changes (e.g., to implement undo and redo operations,
or comparison between ontology versions) and provides a more
detailed information of how an ontology changed as well as the
specific consequences of operations at a higher level.

Second, we address the propagation of changes to distributed
copies of the same ontology. The benefit of our solution is that it
addresses previously unsupported scenarios for collaborative
ontology development where distributed editors can work with a
local copy of the same ontology version, having a distributed con-
trol of the ontology and its related changes.

Our solution also addresses complementary activities required
for the management of ontology changes. We propose methods
and strategies for the identification of ontology versions and the
manipulation of changes, including their capturing (e.g., monitor-
ing, processing and logging), storage and maintenance in a distrib-
uted ontology registry.

Our contributions also include the implementation of the dis-
tributed ontology registry Oyster for the management of ontology
changes in distributed environments.

10. Future work

The most important topics in the context of collaborative ontol-
ogy development in distributed environments that can extend our
work are:

Configurable editorial workflows. An important feature to elabo-
rate in the future is to extend our approach for the formalization of
the collaborative development process to support any kind of col-
laborative editorial workflow (configurable at run-time, making
sure at every moment that the workflow constraints are not
violated).

Conflict resolution. In our current work, the propagation of
changes to distributed ontology copies can only minimize conflicts
by running periodically a synchronization process in an automatic
manner. However, we do not provide explicit mechanisms for the
identification and resolution of conflicts.

Argumentation support. Another interesting aspect that can
complement our current work is to support argumentation lines
during the collaborative ontology development. In particular, this
would be useful for the proposal of changes. However, instead of
being just comments annotations to the proposed changes, it
would be more interesting to support discussions that can be rep-
resented in a machine-understandable format.

Algebra of changes. Another interesting future work is to define
an algebra of changes that would be useful to represent the seman-
tics of changes on ontologies expressed in different ontology
languages.

Acknowledgments

Research reported in this paper was partially supported by the
EU in the IST project NeOn (IST-2006-027595), http://www.neon-
project.org/. We are indebted to FAO for their help with the evalu-
ation and for their insightful feedback on the tool.

References

[1] M. Fernández-López, A. Gómez-Pérez, J. Pazos-Sierra, A. Pazos-Sierra, Building
a chemical ontology using methontology and the ontology design
environment, IEEE Intelligent Systems 14 (1) (1999) 37–46.

[2] S. Staab, R. Studer, H.-P. Schnurr, Y. Sure, Knowledge processes and ontologies,
IEEE Intelligent Systems 16 (1) (2001) 26–34.

[3] S. Pinto, S. Staab, Y. Sure, C. Tempich, OntoEdit Empowering SWAP: A Case
Study in Supporting DIstributed, Loosely-controlled and evolvInG Engineering
of oNTologies (DILIGENT), in: Proceedings of the First European Semantic Web
Symposium, ESWS 2004, Heraklion, Crete, Greece, 2004, pp. 16–30.

[4] A. de Moor, P. D. Leenheer, R. Meersman, DOGMA-MESS: A Meaning Evolution
Support System fornm Interorganizational Ontology Engineering, in:
Proceedings of the International Conference on Conceptual Structures, (ICCS
2006), Aalborg, Denmark, Springer, 2006.

[5] O. Muñoz-García, A. Gómez-Pérez, M. Iglesias-Sucasas, S. Kim, A Workflow for
the Networked Ontologies Lifecycle. A Case Study in FAO of the UN, in:
Proceedings of the CAEPIA-TTIA 2007, Springer, Spain, 2007.

[6] R. Palma, Ontology Metadata Management in Distributed Environments, Ph.D.
Thesis, Universidad Politécnica de Madrid, Spain (December 2009). Available
at: <http://www.oeg-upm.net/files/material/dissertation-RAP- Digital.pdf>.

[7] C. Tempich, Ontology Engineering and Routing in Distributed Knowledge
Management Applications, Ph.D. Thesis, University of Karlsruhe (TH), Germany
(2006).

[8] V. Komulainen, A. Valo, E. Hyvönen, A Tool for Collaborative Ontology
Development for the Semantic Web, in: Proceedings of International
Conference on Dublin Core and Metadata Applications (DC 2005), 2005.

[9] E. Sunagawa, K. Kozaki, Y. Kitamura, R. Mizoguchi, An environment for
distributed ontology development based on dependency management, in: D.
Fensel, K. P. Sycara, J. Mylopoulos (Eds.), International Semantic Web
Conference, Vol. 2870 of Lecture Notes in Computer Science, Springer, 2003,
pp. 453–468.

http://www.neon-project.org/
http://www.neon-project.org/
http://www.oeg-upm.net/files/material/dissertation-RAP-Digital.pdf

314 R. Palma et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 299–314
[10] J. Bao, V. Honavar, Collaborative Ontology Building with Wiki@nt – A Multi-
agent based Ontology Building Environment, in: Proceedings of Third
International Workshop on Evaluation of Ontology-based Tools, located at
the Third International Semantic Web Conference ISWC 2004, Hiroshima,
Japan, 2004.

[11] S. Auer, S. Dietzold, T. Riechert, OntoWiki – A Tool for Social, Semantic
Collaboration, in: The Semantic Web – ISWC 2006, Fifth International
Semantic Web Conference, ISWC 2006, Springer, 2006, pp. 736–749.

[12] N. F. Noy, A. Chugh, W. Liu, M. A. Musen, A framework for ontology evolution
in collaborative environments, in: I.F. Cruz, S. Decker, D. Allemang, C. Preist, D.
Schwabe, P. Mika, M. Uschold, L. Aroyo (Eds.), International Semantic Web
Conference, Vol. 4273 of Lecture Notes in Computer Science, Springer, 2006,
pp. 544–558.

[13] T. Tudorache, N. Noy, Collaborative Protégé, in: Workshop on Social and
Collaborative Construction of Structured Knowledge (CKC 2007) at WWW
2007, Banff, Canada, 2007.

[14] A. Sebastian, N. F. Noy, T. Tudorache, M. A. Musen, A generic ontology for
collaborative ontology-development workflows, in: A. Gangemi, J. Euzenat
(Eds.), Proceedings of the 16th International Conference on Knowledge
Engineering and Knowledge Management (EKAW 2008), Vol. 5268 of Lecture
Notes in Computer Science, Springer, 2008, pp. 318–328.

[15] T. Tudorache, N. Noy, S. Tu, M. Musen, Supporting Collaborative Ontology
Development in Protégé, in: International Semantic Web Conference, 2008.

[16] A. Sebastian, T. Tudorache, N.F. Noy, M.A. Musen, Customizable Workflow
Support for Collaborative Ontology Development, in: Fourth International
Workshop on Semantic Web Enabled Software Engineering (SWESE) at ISWC
2008, 2008.

[17] L. Stojanovic, Methods and Tools for Ontology Evolution, Ph.D. Thesis,
University of Karlsruhe (TH), Germany, August 2004.

[18] M. Klein, Change Management for Distributed Ontologies, Ph.D. Thesis, Vrije
Universiteit, Amsterdam, 2004.

[19] M. Klein, D. Fensel, A. Kiryakov, N.F. Noy, H. Stuckenschmidt, Versioning of
Distributed Ontologies, Tech. Rep., Vrije Universiteit Amsterdam, December
2002.

[20] Y. Liang, Mini-Thesis: Enabling Active Ontology Change Management within
Semantic Web-based Applications, Ph.D. Thesis, University of Southampton,
2006.

[21] M. Klein, N. Noy, A Component-based Framework for Ontology Evolution, in:
Proceedings of the IJCAI’03 Workshop: Ontologies and Distributed Systems,
Acapulco, Mexico, 2003.

[22] N.F. Noy, M.C.A. Klein, Tracking complex changes during ontology evolution,
in: ISWC-2003 Poster Proceedings, Sanibel Island, Florida, 2003.

[23] P. Haase, Y. Sure, D. Vrandecic, D3.1.1 Ontology Management and Evolution:
Survey, Methods and Prototypes, Tech. Rep. D3.1.1, AIFB, University of
Karlsruhe; Sekt Deliverable, December 2004. Available at: <http://www.
sekt-project.com/rd/deliverables/wp03/sekt-d-3-1-1-IncrementalOntology
Evolution.V1.pdf >.

[24] G. Flouris, D. Plexousakis, Handling ontology change: survey and proposal for a
future research direction, Tech. Rep. FORTH-ICS/TR-362, Institute of Computer
Science, FORTH, September 2005. Available at: http://www.ics.forth.gr/isl/
publications/paperlink/fgeo_TR362.pdf>.

[25] D. Oliver, Change Management and Synchronization of Local and Shared
Versions of a Controlled Vocabulary, Ph.D. Thesis, Stanford University, 2000.
Available at: <http://www.citeseer.ist.psu.edu/oliver00change.html>.

[26] L. Stojanovic, N. Stojanovic, S. Handschuh, Evolution of the Metadata in the
Ontology-based Knowledge Management Systems, in: Proceedings of the First
German Workshop on Experience Management, GI, 2002, pp. 65–77.

[27] D. Maynard, W. Peters, M. Sabou, M. d’Aquin, Change management for
metadata evolution, in: International Workshop on Ontology Dynamics
(IWOD) ESWC 2007 Workshop – 7 June – Innsbruck, 2007–06.
[28] Y. Liang, H. Alani, D. Dupplaw, N. Shadbolt, An Approach to Cope with
Ontology Changes for Ontology-based Applications, in: Second Advanced
Knowledge Technologies DTA Symposium, Aberdeen, 2006.

[29] M. Klein, Ontology Versioning and Change Detection on the Web, in:
Proceedings of the 13th International Conference on Knowledge Engineering
and Knowledge Management (EKAW02), Siguenza, Spain, 2002.

[30] N. Noy, S. Kunnatur, M. Klein, M. Musen, Tracking Changes During Ontology
Evolution, in: International Semantic Web Conference, 2004.

[31] D. Rogozan, G. Paquette, Managing Ontology Changes on the Semantic Web,
in: WI ’05: Proceedings of the 2005 IEEE/WIC/ACM International Conference
on Web Intelligence, IEEE Computer Society, Washington, DC, USA, 2005,
pp. 430–433.

[32] D. Ognyanov, A. Kiryakov, Tracking Changes in RDF(S) Repositories, in: EKAW
’02: Proceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management. Ontologies and the Semantic
Web, Springer-Verlag, London, UK, 2002, pp. 373–378.

[33] A. Gangemi, J. Lehmann, V. Presutti, M. Nissim, C. Catenacci, C-ODO: An OWL
Meta-model for Collaborative Ontology Design, in: Workshop on Social and
Collaborative Construction of Structured Knowledge (CKC 2007) at WWW
2007, Banff, Canada, 2007.

[34] J. Hartmann, R. Palma, Y. Sure, P. Haase, M. del Carmen Suárez-Figueroa, OMV
– Ontology Metadata ocabulary, in: C. Welty (Ed.), ISWC 2005 – In Ontology
Patterns for the Semantic Web, 2005.

[35] R. Palma, P. Haase, O. Corcho, A. Gómez-Pérez, Q. Ji, An Editorial Workflow
Approach For Collaborative Ontology Development, in: ASWC ’08: Proceedings
of the Third Asian Semantic Web Conference on The Semantic Web, Springer-
Verlag, Berlin, Heidelberg.

[36] R. Palma, P. Haase, O. Corcho, A. Gómez-Pérez, Change Representation for OWL
2 Ontologies, in: Fifth International Workshop OWL: Experiences and
Directions (OWLED 2009), 2009.

[37] T.R. Gruber, A translation approach to portable ontology specifications,
Knowledge Acquisition 5 (2) (1993) 199–220.

[38] M. Klein, D. Fensel, Ontology Versioning for the Semantic Web, in: Proceedings
of the International Semantic Web Working Symposium (SWWS’01), Stanford
University, California, USA, 2001.

[39] R. Palma, J. Hartmann, P. Haase, OMV – Ontology Metadata Vocabulary for the
Semantic Web, Tech. Rep., Universidad Politécnica de Madrid, University of
Karlsruhe, version 2.4, 2008. Available at: <http://omv.ontoware.org/>.

[40] P. Haase, L. Stojanovic, Consistent evolution of OWL ontologies, in: A. Gómez-
Pérez, J. Euzenat (Eds.), ESWC, Vol. 3532 of Lecture Notes in Computer Science,
Springer, 2005, pp. 182–197.

[41] R. Palma, P. Haase, Y. Wang, M. d’Aquin, D1.3.1 Propagation Models and
Strategies, Tech. Rep. D1.3.1, UPM; NeOn Deliverable, November 2007,
Available at: <http://www.neon-project.org/>.

[42] R. Palma, P. Haase, Oyster – Sharing and Re-using Ontologies in a Peer-to-Peer
Community, in: International Semantic Web Conference, 2005, pp. 1059–1062.

[43] V.R. Basili, R.W. Selby, D.H. Hutchens, Experimentation in software engineering,
IEEE Transactions on Software Engineering 12 (7) (1986) 733–743.

[44] S.L. Pfleeger, Experimental design and analysis in software engineering – Part
2: how to set up and experiment, SIGSOFT Software Engineering Notes 20 (1)
(1995) 22–26.

[45] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, El.J.
Rosenberg, Preliminary guidelines for empirical research in software
engineering, IEEE Transactions on Software Engineering 28 (8) (2002) 721–
734.

[46] E.P. van Veenendaal, Questionnaire Based Usability Testing, in: Proceedings of
the European Software Quality Week, Brussels, 1998.

http://www.sekt-project.com/rd/deliverables/wp03/sekt-d-3-1-1-IncrementalOntologyEvolution.V1.pdf
http://www.sekt-project.com/rd/deliverables/wp03/sekt-d-3-1-1-IncrementalOntologyEvolution.V1.pdf
http://www.sekt-project.com/rd/deliverables/wp03/sekt-d-3-1-1-IncrementalOntologyEvolution.V1.pdf
http://www.sekt-project.com/rd/deliverables/wp03/sekt-d-3-1-1-IncrementalOntologyEvolution.V1.pdf
http://www.sekt-project.com/rd/deliverables/wp03/sekt-d-3-1-1-IncrementalOntologyEvolution.V1.pdf
http://www.sekt-project.com/rd/deliverables/wp03/sekt-d-3-1-1-IncrementalOntologyEvolution.V1.pdf
http://www.sekt-project.com/rd/deliverables/wp03/sekt-d-3-1-1-IncrementalOntologyEvolution.V1.pdf
http://www.ics.forth.gr/isl/publications/paperlink/fgeo_TR362.pdf
http://www.ics.forth.gr/isl/publications/paperlink/fgeo_TR362.pdf
http://www.citeseer.ist.psu.edu/oliver00change.html
http://omv.ontoware.org/
http://www.neon-project.org/

	A holistic approach to collaborative ontology development based on change management
	1 Introduction
	2 Overview of the state of the art
	3 Our approach in a nutshell
	4 Collaborative ontology development supported by change management
	4.1 Analysis of collaborative ontology development
	4.2 Running example
	4.3 Workflow model
	4.3.1 Illustration with running example

	4.4 Workflow ontology
	4.4.1 Illustration with running example

	4.5 Workflow management and enactment

	5 Change management in distributed environments
	5.1 Ontology change representation
	5.2 Ontology change manipulation
	5.2.1 Ontology change capturing
	5.2.2 Ontology version management
	5.2.3 Ontology change storage and maintenance

	5.3 Ontology change propagation
	5.4 Change propagation to distributed copies of an ontology

	6 Technological support for collaborative ontology development in distributed environments
	6.1 Distributed registry
	6.2 Change capturing components
	6.3 Workflow management and enactment component
	6.4 Ontology editing and visualization components

	7 Evaluation experiment
	8 Evaluation summary and discussion
	9 Conclusions
	10 Future work
	Acknowledgments
	References

