5,509 research outputs found

    Thermodynamics of four-dimensional black objects in the warped compactification

    Full text link
    We reinvestigate the thermodynamics of black objects (holes and strings) in four-dimensional braneworld models that are originally constructed by Emparan, Horowitz and Myers based on the anti-de Sitter (AdS) C-metric. After proving the uniqueness of slicing the AdS C-metric, we derive thermodynamic quantities of the black objects by means of the Euclidean formulation and find that we have no necessity of requiring any regularization to calculate their classical action. We show that there exist the Bekenstein-Hawking law and the thermodynamic first law. The thermodynamic mass of the localized black hole on a flat brane is negative, and it differs from the one previously derived. We discuss the thermodynamic stabilities and show that the BTZ black string is more stable than the localized black holes in a canonical ensemble, except for an extreme case. We also find a braneworld analogue of the Hawking-Page transition between the BTZ black string and thermal AdS branes. The localized black holes on a de Sitter brane is discussed by considering Nariai instanton, comparing the study of "black cigar" in the five-dimensional braneworld model.Comment: 15 pages, 4 figures, RevTex4, typos fixed, minor correction

    Crossing the Phantom Divide

    Get PDF
    We consider fluid perturbations close to the "phantom divide" characterised by p = -rho and discuss the conditions under which divergencies in the perturbations can be avoided. We find that the behaviour of the perturbations depends crucially on the prescription for the pressure perturbation delta-p. The pressure perturbation is usually defined using the dark energy rest-frame, but we show that this frame becomes unphysical at the divide. If the pressure perturbation is kept finite in any other frame, then the phantom divide can be crossed. Our findings are important for generalised fluid dark energy used in data analysis (since current cosmological data sets indicate that the dark energy is characterised by p ~ -rho so that p < -rho cannot be excluded) as well as for any models crossing the phantom divide, like some modified gravity, coupled dark energy and braneworld models. We also illustrate the results by an explicit calculation for the "Quintom" case with two scalar fields.Comment: 14 pages, 10 figures, v2: updated to agree with published version: more readable figures, slightly expanded discussion on modified gravity models and the interpolation across w=-1, results and conclusions unchange

    Scalar perturbations of higher dimensional rotating and ultra-spinning black holes

    Full text link
    We investigate the stability of higher dimensional rotating black holes against scalar perturbations. In particular, we make a thorough numerical and analytical analysis of six-dimensional black holes, not only in the low rotation regime but in the high rotation regime as well. Our results suggest that higher dimensional Kerr black holes are stable against scalar perturbations, even in the ultra-spinning regime.Comment: 7 pages, ReVTeX

    Perturbative analysis of wave interactions in nonlinear systems

    Full text link
    This work proposes a new way for handling obstacles to asymptotic integrability in perturbed nonlinear PDEs within the method of Normal Forms - NF - for the case of multi-wave solutions. Instead of including the whole obstacle in the NF, only its resonant part is included, and the remainder is assigned to the homological equation. This leaves the NF intergable and its solutons retain the character of the solutions of the unperturbed equation. We exploit the freedom in the expansion to construct canonical obstacles which are confined to te interaction region of the waves. Fo soliton solutions, e.g., in the KdV equation, the interaction region is a finite domain around the origin; the canonical obstacles then do not generate secular terms in the homological equation. When the interaction region is infifnite, or semi-infinite, e.g., in wave-front solutions of the Burgers equation, the obstacles may contain resonant terms. The obstacles generate waves of a new type, which cannot be written as functionals of the solutions of the NF. When an obstacle contributes a resonant term to the NF, this leads to a non-standard update of th wave velocity.Comment: 13 pages, including 6 figure

    Evolution of Cosmological Perturbations in the Universe dominated by Multiple Scalar Fields

    Full text link
    By efforts of several authors, it is recently established that the dynamical behavior of the cosmological perturbation on superhorizon scales is well approximated in terms of that in the long wavelength limit, and the latter can be constructed from the evolution of corresponding exactly homogeneous universe. Using these facts, we investigate the evolution of the cosmological perturbation on superhorizon scales in the universe dominated by oscillating multiple scalar fields which are generally interacting with each other, and the ratio of whose masses is incommensurable. Since the scalar fields oscillate rapidly around the local minimum of the potential, we use the action angle variables. We found that this problem can be formulated as the canonical perturbation theory in which the perturbed part appearing as the result of the expansion of the universe and the interaction of the scalar fields is bounded by the negative power ot time. We show that by constructing the canonical transformations properly, the transformed hamiltonian becomes simple enough to be solved. As the result of the invetigation using the long wavelength limit and the canonical perturbation theory, under the sufficiently general conditions, we prove that for the adiabatic growing mode the Bardeen parameter stays constant and that for all the other modes the Bardeen parameter decays. From the viewpoint of the ergodic theory, it is discussed that as for the Bardeen parameter, the sigularities appear probabilistically. This analysis serves the understanding of the evolution of the cosmological perturbations on superhorizon scales during reheating.Comment: 31 Pages; Latex, No figure

    Quantum-mechanical generation of gravitational waves in braneworld

    Get PDF
    We study the quantum-mechanical generation of gravitational waves during inflation on a brane embedded in a five-dimensional anti-de Sitter bulk. To make the problem well-posed, we consider the setup in which both initial and final phases are given by a de Sitter brane with different values of the Hubble expansion rate. Assuming that the quantum state is in a de Sitter invariant vacuum in the initial de Sitter phase, we numerically evaluate the amplitude of quantum fluctuations of the growing solution of the zero mode in the final de Sitter phase. We find that the vacuum fluctuations of the initial Kaluza-Klein gravitons as well as of the zero mode gravitons contribute to the final amplitude of the zero mode on small scales, and the power spectrum is quite well approximated by what we call the rescaled spectrum, which is obtained by rescaling the standard four-dimensional calculation following a simple mapping rule. Our results confirm the speculation raised in Ref. \cite{Kobayashi:2003cn} before.Comment: 11 pages, 11 figure

    Multiple-Time Higher-Order Perturbation Analysis of the Regularized Long-Wavelength Equation

    Full text link
    By considering the long-wave limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple scale method in obtaining uniform perturbative series.Comment: 15 pages, RevTex, no figures (to appear in Phys. Rev. E

    Perturbations and Stability of Higher-Dimensional Black Holes

    Full text link
    In this lecture, I explain the gauge-invariant formulation for perturbations of background spacetimes with untwisted homologous Einstein fibres, which include lots of practically important spacetimes such as static black holes, static black branes and rotating black holes in various dimensions. As applications, we discuss the stability of static black holes in higher dimensions and flat black branes.Comment: 45 pages, 9 figures. Based on the lecture given at the 4th Aegean Summer School. References added and typos correcte

    Gravitational instability of Einstein-Gauss-Bonnet black holes under tensor mode perturbations

    Full text link
    We analyze the tensor mode perturbations of static, spherically symmetric solutions of the Einstein equations with a quadratic Gauss-Bonnet term in dimension D>4D > 4. We show that the evolution equations for this type of perturbations can be cast in a Regge-Wheeler-Zerilli form, and obtain the exact potential for the corresponding Schr\"odinger-like stability equation. As an immediate application we prove that for D6D \neq 6 and α>0\alpha >0, the sign choice for the Gauss-Bonnet coefficient suggested by string theory, all positive mass black holes of this type are stable. In the exceptional case D=6D =6, we find a range of parameters where positive mass asymptotically flat black holes, with regular horizon, are unstable. This feature is found also in general for α<0\alpha < 0.Comment: 7 pages, 1 figure, minor corrections, references adde

    Millikelvin magnetic relaxation measurements of alpha-Fe2O3 antiferromagnetic particles

    Full text link
    In this paper we report magnetic relaxation data for antiferromagnetic alpha-Fe2O3 particles of 5 nm mean diameter in the temperature range 0.1 K to 25 K. The average spin value of these particles S=124 and the uniaxial anisotropy constant D=1.6x10^-2 K have been estimated from the experimental values of the blocking temperature and anisotropy field. The observed plateau in the magnetic viscosity from 3 K down to 100 mK agrees with the occurrence of spin tunneling from the ground state Sz = S. However, the scaling M vs Tln(nu t) is broken below 5 K, suggesting the occurrence of tunneling from excited states below this temperature.Comment: 4 pages (two columns), 4 figure
    corecore