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Quantum-mechanical generation of gravitational waves in a braneworld

Tsutomu Kobayashi* and Takahiro Tanaka†

Department of Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 16 May 2005; published 17 June 2005)

We study the quantum-mechanical generation of gravitational waves during inflation on a brane
embedded in a five-dimensional anti de Sitter bulk. To make the problem well posed, we consider the
setup in which both initial and final phases are given by a de Sitter brane with different values of the
Hubble expansion rate. Assuming that the quantum state is in a de Sitter invariant vacuum in the initial de
Sitter phase, we numerically evaluate the amplitude of quantum fluctuations of the growing solution of the
zero mode in the final de Sitter phase. We find that the vacuum fluctuations of the initial Kaluza-Klein
gravitons as well as of the zero mode gravitons contribute to the final amplitude of the zero mode on small
scales, and the power spectrum is quite well approximated by what we call the rescaled spectrum, which is
obtained by rescaling the standard four-dimensional calculation following a simple mapping rule. Our
results confirm the speculation raised in Ref. [T. Kobayashi, H. Kudoh, and T. Tanaka, Phys. Rev. D 68,
044025 (2003).] before.
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I. INTRODUCTION

In recent years there has been a growing attention to
braneworld scenarios, in which our observable Universe is
realized as a brane embedded in a higher dimensional bulk
spacetime [1]. Among various models a simple setup
called the Randall-Sundrum type II model [2] is of par-
ticular interest because, despite gravity propagating into an
infinite extra dimension, four-dimensional general relativ-
ity can be recovered on the brane due to the warped
geometry of anti de Sitter (AdS) spacetime [2–4]. Cos-
mological consequences of the Randall-Sundrum type bra-
neworld have been widely discussed [5–10], especially
regarding cosmological perturbations [11].

The generation and evolution of perturbations are among
the most important issues in cosmology because of their
direct link to cosmological observations such as the sto-
chastic gravitational wave background and the temperature
anisotropy of the cosmic microwave background (CMB),
by which we can probe the early Universe. While the
cosmological perturbation theory in the conventional
four-dimensional Universe is rather established [12,13],
calculating cosmological perturbations in the braneworld
still remains a difficult problem. Although some attempts
have been made concerning scalar perturbations [14–19],
further progress is awaited to give a clear prediction about
the CMB anisotropy in the Randall-Sundrum braneworld.
Almost the same is true for gravitational wave (tensor)
perturbations [8,20–31]. However, since their generation
and evolution depend basically only on the background
geometry, they are slightly easier to handle.

During inflation superhorizon gravitational wave pertur-
bations are generated from vacuum fluctuations of grav-
itons. The pure de Sitter braneworld is the special case that

allows definite analytical computation of quantum fluctua-
tions. Thanks to the symmetry of the de Sitter group, the
perturbation equation becomes separable and can be solved
exactly [20]. The time variation of the Hubble parameter
generally causes mixing of a massless zero mode and
massive Kaluza-Klein modes, and this effect was inves-
tigated based on the ‘‘junction’’ models, which assume an
instantaneous transition from a de Sitter to a Minkowski
brane [21] or to another de Sitter brane [22]. These works
discussed the quantum-mechanical generation of gravita-
tional waves within such limited and simplified models.

As for the classical evolution of gravitational waves
during the radiation dominated epoch, several studies
have been done [23–26], assuming that a given single
initial mode for each comoving wave number dominates.
The focus of these works is mainly on the evolution of
modes which reenter the horizon in the high-energy
regime, while the late time evolution is worked out analyti-
cally in Refs. [17,31] by resorting to low-energy approxi-
mation methods.

In this paper we consider the generation of primordial
gravitational waves during inflation in more general mod-
els of the Randall-Sundrum type. For definiteness, we
adopt a simple setup in which both initial and final phases
are described by de Sitter braneworlds. Two de Sitter
phases with different values of the Hubble expansion rate
are smoothly interpolated. This work is an extension of the
work on the junction models by the present authors in
collaboration with H. Kudoh [22]. In the previous analysis
the transition of the Hubble rate was abrupt and the gap was
assumed to be infinitesimal. Here we extend the previous
results to more general models with smooth transition by
using numerical calculations with a refined formulation.

This paper is organized as follows. In the next section we
briefly summarize past studies [20–22] on the generation
of gravitational waves via quantum fluctuations during
inflation in the Randall-Sundrum braneworld, emphasizing
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the mapping formula introduced in Ref. [22]. In Sec. III we
describe our numerical scheme to investigate the genera-
tion of gravitational waves, and then in Sec. IV we present
results of our calculations. Section V is devoted to
discussion.

II. GRAVITATIONAL WAVES IN INFLATIONARY
BRANEWORLD

A. Pure de Sitter brane

The background spacetime that we consider is com-
posed of a five-dimensional AdS bulk, whose metric is
given in the Poincaré coordinates by

ds2 �
‘2

z2
��dt2 � �ijdxidxj � dz2�; (1)

and a Friedmann brane at z � z�t�. Here ‘ is the bulk
curvature length, which is constrained by tabletop experi-
ments as ‘ & 0:1 mm [32].

First let us consider the generation of gravitational
waves from pure de Sitter inflation on the brane [20].
The coordinate system appropriate for the present situation
is

ds2 �
‘2

sinh2


�
1

�2
��d�2 � �ijdxidxj� � d
2

�
; (2)

which is obtained from Eq. (1) by a coordinate transfor-
mation

t � � cosh
� t0; (3)

z � �� sinh
; (4)

where t0 is an arbitrary constant and � is the conformal
time, which is negative. The de Sitter brane is located at


 � 
b � constant; (5)

and the Hubble parameter on the brane is given by

H � ‘�1 sinh
b: (6)

The gravitational wave perturbations are described by
the metric

ds2 �
‘2

sinh2


�
1

�2
��d�2 � ��ij � hij�dxidxj� � d
2

�
;

(7)

and we decompose the perturbations into the spatial
Fourier modes as

hij �

���
2

p

�2�M5�3=2

Z
d3k�k��; 
�eik	xeij; (8)

where eij is the transverse-traceless polarization tensor and
M5 is the fundamental mass scale which is related to the
four-dimensional Planck mass MPl by ‘�M5�3 � M2

Pl. The
prefactor

���
2

p
=�M5�3=2 is chosen so that the kinetic term for

�k in the effective action is canonically normalized.
Hereafter we will suppress the subscript k. The linearized
Einstein equations give the following Klein-Gordon-type
equation for �:�

@2

@�2
�
2

�
@
@�

� k2 �
sinh3


�2
@
@


1

sinh3


@
@


�
� � 0; (9)

which is obviously separable. Assuming the Z2 symmetry
across the brane, the boundary condition on the brane is
given by

n�@��jbrane / @
�j
�
b � 0; (10)

where n� is a unit normal to the brane. Equation (9) admits
one discrete zero mode,

�0��� � N 	 ‘�1=2
H�����
2k

p

�
��

i
k

�
e�ik�; (11)

where N is a normalization constant, which will be fixed
later, as well as massive Kaluza-Klein (KK) modes,

����; 
� �  �������
�;

where  ���� and ���
� obey�
@2

@�2
�
2

�
@
@�

� k2 �
�2 � 9=4

�2

�
 ���� � 0; (12)

�
sinh3


@
@


1

sinh3


@
@


� �2 �
9

4

�
���
� � 0; (13)

and the corresponding Kaluza-Klein mass is given by

m2 �
�
�2 �

9

4

�
H2 �

9

4
H2: (14)

Because of the mass gap�m � 3H=2 [7] between the zero
mode and the lowest KK mode, all the massive KK modes
decay on the brane at superhorizon scales during inflation.
The explicit forms of the KK mode functions are shown in
the Appendix.

In inflationary cosmology, fluctuations in the graviton
field (and other fields such as the inflaton) are considered to
be generated quantum-mechanically. Following the stan-
dard canonical quantization scheme we quantize the gravi-
ton field. Treating � as an operator, it may be expanded as

� � â0�0 � ây0�
�
0 �

Z 1

0
d��â��� � ây���

��: (15)

The annihilation and creation operators ân and âyn with
n � 0 or � satisfy the usual commutation relations and the
modes �0 and �� are normalized so that they satisfy

��0 	�0� � ����
0 	�

�
0� � 1;

��� 	��0 � � ����
� 	�

�
�0 � � ���� �0�;

��0 	��� � ���
0 	�

�
�� � 0;

��n 	�
�
n0 � � 0; for n; n0 � 0; �;

(16)
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where �	� is the Wronskian defined by [21,22]

�X 	 Y� :� �2i
Z 1


b
d


‘3

�2sinh3

�X@�Y� � Y�@�X�:

(17)

From the conditions (16) we can determine the normaliza-
tion of the zero mode as

N � C�‘H�; (18)

with

C�x� :�
� ��������������
1� x2

p
� x2 ln

�
x

1�
��������������
1� x2

p

��
�1=2

; (19)

which is the same as that introduced in Refs. [20–22], and
behaves like C2�x� � 1 for x� 1 and C2�x� � 3x=2 for
x� 1. This function plays an important role throughout
the present paper.

The expectation value of the squared amplitude of the
vacuum fluctuation in the zero mode is given by

j�0j
2 � ‘�1C2�‘H�

H2

2k3
�1� k2�2� ! ‘�1C2�‘H�

H2

2k3
;

(20)

where the expression in the last expression is obtained by
evaluating the perturbation in the superhorizon regime/at a
late time, and hence this is the amplitude of the growing
mode. In terms of the power spectrum defined by

P :�
4�k3

�2��3
	
2

�M5�
3 j�0j

2; (21)

we have

P �
2C2�‘H�

M2
Pl

�
H
2�

�
2
; (22)

where we have used ‘�M5�3 � M2
Pl. This is the standard flat

spectrum up to the overall factor C2�‘H�. In conventional
four-dimensional cosmology the power spectrum of the
primordial gravitational waves from de Sitter inflation is
given by [33]

P 4D �
2

M2
Pl

�
H
2�

�
2
: (23)

Thus just by rescaling the amplitude in four-dimensional
cosmology as

H � HC�‘H�; (24)

the braneworld result (22) is exactly obtained.

B. The junction model

Pure de Sitter inflation on the brane described in the
previous subsection is a special case where the amplitude
of the growing zero mode can be obtained completely
analytically. As a next step to understand gravitational

waves from more general inflation with H � const, a
discontinuous change in the Hubble parameter was con-
sidered in Ref. [22]. In such a junction model the Hubble
parameter is given by

H��� �
�
Hi; � < �0;
Hf � Hi � �H; � > �0;

(25)

and

�H
Hi

� 1; (26)

is assumed.
The evolution of gravitational wave perturbations can be

analyzed by solving the equation of motion backward
using the advanced Green’s function [21]. A set of mode
functions can be constructed for the initial de Sitter stage,
and another for the final de Sitter stage, either of which
forms a complete orthonormal basis for the graviton wave
function. The final (growing) zero mode may be written as
a linear combination of the initial zero and KK modes. The
Bogoliubov coefficients give the creation rate of final zero
mode gravitons from the initial vacuum fluctuations in the
Kaluza-Klein modes as well as in the zero mode. Thus the
power spectrum may be written as a sum of two separate
contributions,

P � P 0 � PKK; (27)

where P 0 and PKK are the parts coming from the initial
zero and Kaluza-Klein modes, respectively.

An important result brought by analyzing this junction
model is that P is well approximated by the rescaled
spectrum P res obtained by using a simple map speculated
by the exact result of pure de Sitter inflation [Eq. (24)].
More precisely, let P 4D�k� be the gravitational wave spec-
trum evaluated in the standard four-dimensional inflation-
ary Universe with the same time dependence of the Hubble
parameter (25), and then the rescaled spectrum is defined
by

P 4D �
2

M2
Pl

�
hk
2�

�
2

� P res �
2C2�‘hk�

M2
Pl

�
hk
2�

�
2
: (28)

Comparing the rescaled spectrum with P obtained from a
five-dimensional calculation, one finds that the difference
between these two is suppressed to be second order like
[22] 







P � P res

P









&

�
�H
Hi

�
2
� 1: (29)

It might be worth noting here that the KK contribution PKK
is necessary for realizing this interesting agreement be-
tween the braneworld result and the (basically) four-
dimensional result especially at high energies ‘H � 1.
The above agreement (29) raised a speculation that the
mapping formula hk � C�‘hk� may work with good accu-
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racy in more general inflation models with a smoothly
changing expansion rate. The central purpose of the
present paper is to check whether this speculation is correct
or not.

III. FORMULATION

A. Basic equations

Now let us explain the formulation that we use to study
the generation of gravitational waves without assuming a
pure de Sitter brane. Our formulation is based on double
null coordinates, which are presumably the most conve-
nient for numerical calculations.

The metric (1) can be rewritten by using double null
coordinates

u � t� z; (30)

v � t� z; (31)

in the form of

ds2 �
4‘2

�v� u�2
��dudv� �ijdx

idxj�: (32)

The trajectory of the brane can be specified arbitrarily by

v � q�u�: (33)

By a further coordinate transformation

U � u; (34)

q�V� � v; (35)

we obtain

ds2 �
4‘2

�q�V� �U�2
��q0�V�dUdV � �ijdxidxj�; (36)

where a prime denotes differentiation with respect to the
argument. Now in the new coordinates the position of the
brane is simply given by

U � V: (37)

We will use this coordinate system for actual numerical
calculations.

The induced metric on the brane is

ds2b �
4‘2

�q�V� � V�2
��q0�V�dV2 � �ijdx

idxj�; (38)

from which we can read off the conformal time � and the
scale factor a, respectively, as

d� �
�����������
q0�V�

q
dV; (39)

a �
2‘

q�V� � V
; (40)

and hence the Hubble parameter on the brane is written as

‘H �
1

2
�����������
q0�V�

p �1� q0�V��; (41)

or equivalently

q0�V� � �
��������������������
1� ‘2H2

p
� ‘H�2: (42)

Given the Hubble parameter as a function of �, one can
integrate Eqs. (39) and (42) to obtain q as a function of V.

When the brane undergoes pure de Sitter inflation [and
thus q0�V� � constant], the following relation between
�U;V� and ��; 
� will be useful:


 � 
b �
1

2
ln
�
t0 �U
t0 � V

�
; (43)

� � �e�
b��t0 �U��t0 � V��1=2; (44)

and

q�V� � e�2
b�V � t0� � t0: (45)

The Klein-Gordon-type equation for a gravitational
wave perturbation � in the �U;V� coordinates reduces to�
4@U@V �

6

q�V� �U
�@V � q0�V�@U� � q0�V�k2

�
� � 0;

(46)

supplemented by the boundary condition

�@U � @V��jU�V � 0: (47)

The expression for the Wronskian evaluated on a constant
V hypersurface is given by

�X 	 Y� � 2i
Z V

�1
dU

�
2‘

q�V� �U

�
3
�X@UY

� � Y�@UX�;

(48)

which is independent of the choice of the hypersurface.
When inflation on the brane deviates from a pure de

Sitter one, the decomposition into the zero mode and KK
modes becomes rather ambiguous. For this reason we
require the initial and final phases of inflation to be pure
de Sitter, though arbitrary cosmic expansion is allowed in
the intermediate stage. In both de Sitter phases, q�V� can be
fit by Eq. (45), and 
b and t0 are determined, respectively.
Hence we have two sets of de Sitter coordinates ��; 
� and
�~�; ~
�. We distinguish the coordinates in the final phase by
associating them with tilde. In the final de Sitter phase the
mode will be well outside the horizon, and hence we
expand the graviton field in terms of the growing and
decaying zero mode solutions ~�g and ~�d as

� � Âg ~�g � Âd ~�d �
Z
d��Â� ~�� � Ây

�
~��
��; (49)

where

~�g :� Im� ~�0�; (50)
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~�d :� Re� ~�0�; (51)

and the mode functions with tildes are defined in the same
way as�0 and �� with the substitution of �~
; ~�� for �
; ��.
It can be easily seen that the growing and the decaying
modes are normalized as

� ~�g 	 ~�d�f �
1

2
; � ~�g 	 ~�g�f � � ~�d 	 ~�d�f � 0;

(52)

where subscript f means that the expression is to be
evaluated in the final de Sitter phase. Notice that de
Sitter mode functions thus defined as functions of �U;V�
through �
; �� [or �~
; ~��] do not satisfy the equation of
motion outside the initial (or final) de Sitter phase. Back in
the initial de Sitter phase the graviton field can be ex-
panded as

� � â0�0 � ây0�
�
0 �

Z
d��â��� � ây���

��: (53)

We assume that initially the gravitons are in the de Sitter
invariant vacuum state annihilated by â0 and â�,

â 0j0i � â�j0i � 0: (54)

We would like to evaluate the expectation value of the
squared amplitude of the vacuum fluctuation in the grow-
ing mode at a late time,

j ~�gj
2h0jÂ2gj0i;

or equivalently, the power spectrum,

P �k� �
4�k3

�2��3
2

�M5�3
	 j ~�gj

2h0jÂ2gj0i

!
2C2�‘Hf�

M2
Pl

�Hf

2�

�
2
h0jÂ2gj0i; (55)

where Hf is the Hubble parameter in the final de Sitter
phase. In order to obtain the final amplitude, it is not
necessary to solve the evolution of all the (infinite number
of) degrees of freedom with their initial conditions set by
Eq. (53). In fact, we have only to solve the backward
evolution of the final decaying mode, as explained below.

Suppose that a solution  �U;V� is chosen so as to
satisfy  � ~�d in the final de Sitter phase. From the
Wronskian condition (52) we see that

1

2
Âg � �� 	 ~�d�f � �� 	 �

� ��0 	 �iâ0 �
Z
d���� 	 �iâ� � h:c:;

where subscript i means that the expression is to be eval-
uated in the initial de Sitter phase. In the above we used the
fact that the Wronskian is constant in time. Thus we obtain

h0jÂ2gj0i � 4
�
j��0 	 �ij

2 �
Z
d�j��� 	 �ij

2

�
; (56)

from which we can calculate the power spectrum of the
primordial gravitational waves. It is obvious that the spec-
trum is written in the form of Eq. (27) with

P 0 :�
8C2�‘Hf�

M2
Pl

�Hf

2�

�
2
j��0 	 �ij2; (57)

P KK :�
8C2�‘Hf�

M2
Pl

�Hf

2�

�
2 Z

d�j��� 	 �ij
2: (58)

B. Numerical scheme

Here we describe the algorithm that we employ to solve
the backward evolution of the gravitational perturbations
numerically. We set the boundary conditions for the mode
 so as to be identical to a decaying zero mode ~�d at a
time V � Vf in the final de Sitter phase. We decompose  
as

 �U;V� � ~�d�U;V� � � �U;V�; (59)

and solve the equation for � �U;V� instead of  �U;V�.
The equation of motion for � is obtained as�
4@U@V �

6

q�V� �U
�@V � q0�V�@U� � q0�V�k2

�
� 

� �

�
4@U@V �

6

q�V� �U
�@V � q0�V�@U� � q0�V�k2

�
~�d:

(60)

Since both  and ~�d satisfy the boundary condition of the
form of Eq. (47), the boundary condition for � is also
written as

�@U � @V�� jU�V � 0: (61)

We immediately find that we do not have to solve the
backward evolution in the final de Sitter phase, since � 
identically vanishes there.

In some cases  is not disturbed so much from its final
configuration ~�d�U;Vf�, especially when we discuss a
small deviation from the pure de Sitter case. It is advanta-
geous then to use a small quantity � as a variable in
numerical calculations. Of course, there is no problem even
when � does not stay small.

Our scheme to obtain the values of � at the initial
surface V � Vi is as follows. We give the boundary con-
ditions at V � Vf as f1;1; f2;1; . . . ; fN;1 � 0, where

fn;m :� � �U � Vf � "�n� 1�; V � Vf � "�m� 1��:

A sketch of the numerical grids is shown in Fig. 1. Here N
is taken to be sufficiently large, and we use the same grid
spacing " both in the U and V directions. At a virtual site
�U;V� � �Vf; Vf � "� we set
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f1;2 � f2;1; (62)

so that the boundary condition (61) is satisfied at �Vf �
"=2; Vf � "=2�. From f1;1, f2;1, and f1;2 we can determine
the value of f2;2 by using the equation of motion (60) at
�Vf � "=2; Vf � "=2�, and then from f2;1, f3;1, and f2;2 we
can determine f3;2, and so on. We repeat the same proce-
dure in the subsequent time steps until we obtain
fM;M; fM�1;M; . . . ; fN;M at Vi � Vf � "�M� 1�.

C. A toy model

As stated above, to make the problem well posed, we
consider models which have initial and final de Sitter
phases. To perform numerical calculations, as a concrete
example, we adopt a simple toy model in which the Hubble
parameter is given by an analytic form

H��� � "H �� tanh
�
�� �0
s

�
; (63)

where

"H :�
Hi �Hf

2
; � :�

Hi �Hf

2
; (64)

with Hi and Hf the initial and final values of the Hubble
parameter; s is a parameter that controls the smoothness of
the transition, and�0 indicates a transition time. Taking the
initial time �i and the final time �f so that �0 � �i � s
and �f � �0 � ��0 � s, we have H � Hi for �! �i
andH � Hf for �! �f. The scale factor for this inflation
model is given by

a��� �
�
s� ln

�
2 cosh

�
�� �0
s

��
� "H����0

�
�1
;

(65)

where the integration constant is determined by imposing
that a � ��Hf��

�1 at � � �f � 0. The slow-roll pa-
rameter, / :� �@�H=�aH

2�, is obtained as

/ �
�fs� ln�2 cosh���� �0�=s�� � "H�� ��0g

s� "H cosh���� �0�=s� ��sinh���� �0�=s��2
;

(66)

which takes maximum at � � �0. The maximum value is

/��0� � /max �
�

s "H2a��0�
: (67)

The behavior of the Hubble parameter and the slow-roll
parameter is shown in Fig. 2.

Here we should mention the limitation of this simple toy
model. For fixed values of Hi, Hf, and /max one can pro-
long the period of the transition �smeasured in conformal
time by taking large s. However, using the definition of
/max (67), the transition time scale in proper time is found
to be given by �a��0�s � "H2/max=�. Therefore we can-
not change the transition time scale independently of the
other parameters, Hi, Hf, and /max.

IV. NUMERICAL RESULTS

Using various parameters shown in Table I we per-
formed numerical calculations, the results of which are
presented in Figs. 3–10. Numbers of grids are N �M �
50 000� 1000, and the grid separation " is chosen to be

FIG. 2 (color online). The Hubble parameter and the slow-roll
parameter / in our model. This is a plot for the model of Fig. 9.

FIG. 1 (color online). Numerical (backward) evolution
scheme.
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�0:11–2:5� � ‘ depending on the energy scale of inflation.
Note here that the step width in conformal time � is given
by �� �

�����������
q0�V�

p
" [Eq. (39)], and q0�V� becomes smaller

for a larger value of ‘H [Eq. (42)]. Our choice of " makes
�� about the same size, �� � 0:1, in all the calculations.
Integration over � is performed up to � � 20–40 with an

TABLE I. Parameters used for the numerical calculations
presented in the figures.

‘Hi ‘Hf /max ‘=s �0=‘

Figure 3 0.11 0.10 0.21 0.09 �50:45
Figure 4 0.11 0.08 0.69 0.1 �50:46
Figure 5 1.1 1.0 0.21 0.09 �50:21
Figure 6 1.25 1.0 0.45 0.09 �50:21
Figure 7 1.5 1.0 0.75 0.09 �50:21
Figure 8 3.5 3.0 0.34 0.095 �50:08
Figure 9 11 10 0.19 0.085 �50:02
Figure 10 15 10 0.75 0.09 �50:02

FIG. 3 (color online). Top panel: power spectra of gravita-
tional waves normalized by �2C2�‘Hi�=M2

Pl��Hi=2��2. Red
diamonds (upper ones) indicate the result including the contri-
butions from the initial Kaluza-Klein modes, while green dia-
monds (lower ones) represent the contribution from the initial
zero mode. Although the rescaled four-dimensional spectrum is
shown by blue diamonds, they are almost hidden by the red ones
since the result of the five-dimensional calculation is well
approximated by the rescaled four-dimensional spectrum.
Bottom panel: difference between the five-dimensional and
rescaled four-dimensional spectra.

FIG. 4 (color online). Same as Fig. 3, but the parameters are
different.

FIG. 5 (color online). Same as Fig. 3, but the parameters are
different.
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FIG. 6 (color online). Same as Fig. 3, but the parameters are
different.

FIG. 7 (color online). Same as Fig. 3, but the parameters are
different.

FIG. 8 (color online). Same as Fig. 3, but the parameters are
different.

FIG. 9 (color online). Same as Fig. 3, but the parameters are
different.
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equal grid spacing of 0.15. The typical behavior of the
integrand j��� 	 �ij

2 is shown in Fig. 11.
In order to compare the five-dimensional power spec-

trum with a four-dimensional counterpart, we solve the
conventional evolution equation for gravitational waves
in four dimensions,

�@2� � 2aH@� � k2� � 0; (68)

where H��� is given by the same function as used for the
corresponding five-dimensional computation, and then we
calculate the rescaled power spectrum obtained from the
four-dimensional ‘‘bare‘‘ spectrum by using the mapping
formula (28).

We introduce a parameter that represents a difference
between the five-dimensional power spectrum and the
rescaled four-dimensional spectrum:

��k� :�
P res � P

P
: (69)

In all the cases of our calculations we clearly see that
j�j � 1 and thus we conclude that the primordial spec-
trum of the gravitational waves in the braneworld is quite
well approximated by the rescaled four-dimensional spec-
trum. We also find that the difference becomes larger for
larger values of the slow-roll parameter /, but j�j is no
greater than O�10�2� even for models with /max ’ 0:75.
Notice that the Universe is not inflating any more if / is
greater than unity. At high energies ‘H * 1 it can be seen
that dependence of � on ‘H is weak, while at low energies
like ‘H � 0:1, � is further suppressed compared to the
high-energy cases.

Contributions from the initial KK modes can be signifi-
cant for small wavelength modes. For example, for the
modes with k=a��0� "H ’ 10 we see that PKK=P �
O�10�2� at low energies, but the KK contribution can
become as large as PKK=P � 0:6 in our most ‘‘violent‘‘
model with ‘H � 10 and /max ’ 0:75.

V. DISCUSSION

In this paper we have investigated the generation of
gravitational waves during inflation on a brane and com-
puted the primordial spectrum. Extending the previous
work [22], we have considered a model composed of the
initial and final de Sitter stages, and the transition region
connecting them smoothly. We have numerically solved
the backward evolution of the final decaying mode to
obtain the amplitude of the growing zero mode at a late
time by making use of the Wronskian method.

We found that the power spectrum P is well approxi-
mated by the rescaled spectrum P res basically calculated in
standard four-dimensional inflationary cosmology. Here
the rescaling formula for the amplitude is given by a simple
map hk � hkC�‘hk�, where C is the normalization factor
of the zero mode. Although the difference of the two
spectra, � :� �P res � P �=P , depends on the energy scale
of inflation and the slow-roll parameter, our numerical
analysis clearly shows that in any case the mapping for-
mula works with quite good accuracy, yielding j�j &

O�10�2�. This implies that the mapping relation between
the two spectra holds quite generally in the Randall-
Sundrum braneworld, which we believe is a useful
formula.

We have taken into account the vacuum fluctuations in
initial Kaluza-Klein modes as well as the zero mode, and
found that both of them contribute to the final amplitude of
the zero mode. The amount of the initial KK contribution
can be large on small scales, and it increases as the energy
scale of inflation ‘H becomes higher. This gives rise to a

FIG. 11 (color online). Wronskian j��� 	 �ij
2 as a function

of �. The parameters are given by those of Fig. 9 and
k=a��0� "H � 10.

FIG. 10 (color online). Same as Fig. 3, but the parameters are
different.
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quite interesting picture. When the expansion rate changes
during inflation, zero mode gravitons escape into the bulk
as KK gravitons, but at the same time bulk gravitons come
onto the brane to compensate for the loss, and these two
effects almost cancel each other. This seems to happen,
irrespective of the energy scale, in a wide class of the
inflation models even with a not-so-small slow-roll pa-
rameter. It is suggested that this is not the case in the
radiation dominated decelerating Universe [23–26], where
the decay into KK gravitons reduces the amplitude of the
gravitational waves on the brane. The junction model of
Ref. [21] joining de Sitter and Minkowski branes also
shows the suppression of the gravitational wave amplitude
at high energies.

What is the reason for the remarkable agreement of the
braneworld spectrum and the rescaled four-dimensional
spectrum? Extremely long wavelength modes, which leave
the horizon during the initial de Sitter stage much before
the Hubble parameter changes, have a squared amplitude
of �2C2�‘Hi�=M

2
Pl��Hi=2��

2, and the amplitude of the
perturbations stays constant during the subsequent stages
[34]. The same is true for four-dimensional inflationary
cosmology, and so the mapping formula is applicable to
these long wavelength modes. On the other hand, a mode
whose wavelength is much shorter than the Hubble horizon
scale at the transition time will feel the transition as
adiabatic and hence the particle production is exponen-
tially suppressed, h0jÂy

g Âgj0i � 1, leading to P �

�2C2�‘Hf�=M2
Pl��Hf=2��2. The same argument can be

applied to the conventional cosmology. Thus it is not
surprising that the mapping formula works for such short
wavelength modes. However, at present there seems no
simple reason for the amplitude of the modes with k�
O�a��0� "H� to coincide with the rescaled one.
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APPENDIX: KALUZA-KLEIN MODE FUNCTIONS

In the de Sitter braneworld the Kaluza-Klein mode
functions in the time direction satisfy Eq. (12) and are
given by

 ���� �

����
�

p

2
‘�3=2e���=2����3=2H�1�

i� ��k��; (A1)

where H�1�
i� is the Hankel function. They are normalized so

that

�
i‘3

�2
� �@� 

�
� �  �

�@� �� � 1: (A2)

The mode functions in the extra direction satisfy Eq. (13)
and are given by

���
� � C1�sinh
�2�P�2
�1=2�i��cosh
�

� C2Q
�2
�1=2�i��cosh
��; (A3)

where P�2
�1=2�i� and Q�2

�1=2�i� are the associated Legendre
functions. The constants C1 and C2 are determined by the
normalization condition

2
Z 1


b

d


�sinh
�3
��
�0�� � ���� �0�; (A4)

and the boundary condition (47), respectively, as

C1 �
�







 %�i��
%�5=2� i��










2
�









 %��i��
%�5=2� i��

� �C2
%�i�� 3=2�
%�1� i��










2
�
�1=2

; (A5)

C2 �
P�1
�1=2�i��cosh
b�

Q�1
�1=2�i��cosh
b�

: (A6)
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