22,759 research outputs found

    Reduction of the radar cross section of arbitrarily shaped cavity structures

    Get PDF
    The problem of the reduction of the radar cross section (RCS) of open-ended cavities was studied. The issues investigated were reduction through lossy coating materials on the inner cavity wall and reduction through shaping of the cavity. A method was presented to calculate the RCS of any arbitrarily shaped structure in order to study the shaping problem. The limitations of this method were also addressed. The modal attenuation was studied in a multilayered coated waveguide. It was shown that by employing two layers of coating, it was possible to achieve an increase in both the magnitude of attenuation and the frequency band of effectiveness. The numerical method used in finding the roots of the characteristic equation breaks down when the coating thickness is very lossy and large in terms of wavelength. A new method of computing the RCS of an arbitrary cavity was applied to study the effects of longitudinal bending on RCS reduction. The ray and modal descriptions for the fields in a parallel plate waveguide were compared. To extend the range of validity of the Shooting and Bouncing Ray (SBR) method, the simple ray picture must be modified to account for the beam blurring

    Optimal Correlation Estimators for Quantized Signals

    Full text link
    Using a maximum-likelihood criterion, we derive optimal correlation strategies for signals with and without digitization. We assume that the signals are drawn from zero-mean Gaussian distributions, as is expected in radio-astronomical applications, and we present correlation estimators both with and without a priori knowledge of the signal variances. We demonstrate that traditional estimators of correlation, which rely on averaging products, exhibit large and paradoxical noise when the correlation is strong. However, we also show that these estimators are fully optimal in the limit of vanishing correlation. We calculate the bias and noise in each of these estimators and discuss their suitability for implementation in modern digital correlators.Comment: 8 Pages, 3 Figures, Submitted to Ap

    The effects of ground hydrology on climate sensitivity to solar constant variations

    Get PDF
    The effects of two different evaporation parameterizations on the climate sensitivity to solar constant variations are investigated by using a zonally averaged climate model. The model is based on a two-level quasi-geostrophic zonally averaged annual mean model. One of the evaporation parameterizations tested is a nonlinear formulation with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface. The other is the linear formulation with the Bowen ratio essentially determined by the prescribed linear coefficient

    Magnetic susceptibility study of hydrated and non-hydrated NaxCoO2-yH2O single crystals

    Full text link
    We have measured the magnetic susceptibility of single crystal samples of non-hydrated NaxCoO2 (x ~ 0.75, 0.67, 0.5, and 0.3) and hydrated Na0.3CoO2-yH2O (y ~ 0, 0.6, 1.3). Our measurements reveal considerable anisotropy between the susceptibilities with H||c and H||ab. The derived anisotropic g-factor ratio (g_ab/g_c) decreases significantly as the composition is changed from the Curie-Weiss metal with x = 0.75 to the paramagnetic metal with x = 0.3. Fully hydrated Na0.3CoO2-1.3H2O samples have a larger susceptibility than non-hydrated Na0.3CoO2 samples, as well as a higher degree of anisotropy. In addition, the fully hydrated compound contains a small additional fraction of anisotropic localized spins.Comment: 6 pages, 5 figure

    Search for axion-like particles using a variable baseline photon regeneration technique

    Full text link
    We report the first results of the GammeV experiment, a search for milli-eV mass particles with axion-like couplings to two photons. The search is performed using a "light shining through a wall" technique where incident photons oscillate into new weakly interacting particles that are able to pass through the wall and subsequently regenerate back into detectable photons. The oscillation baseline of the apparatus is variable, thus allowing probes of different values of particle mass. We find no excess of events above background and are able to constrain the two-photon couplings of possible new scalar (pseudoscalar) particles to be less than 3.1x10^{-7} GeV^{-1} (3.5x10^{-7} GeV^{-1}) in the limit of massless particles.Comment: 5 pages, 4 figures. This is the version accepted by PRL and includes updated limit

    Enhanced quasiparticle dynamics of quantum well states: the giant Rashba system BiTeI and topological insulators

    Full text link
    In the giant Rashba semiconductor BiTeI electronic surface scattering with Lorentzian linewidth is observed that shows a strong dependence on surface termination and surface potential shifts. A comparison with the topological insulator Bi2Se3 evidences that surface confined quantum well states are the origin of these processes. We notice an enhanced quasiparticle dynamics of these states with scattering rates that are comparable to polaronic systems in the collision dominated regime. The Eg symmetry of the Lorentzian scattering contribution is different from the chiral (RL) symmetry of the corresponding signal in the topological insulator although both systems have spin-split surface states.Comment: 6 pages, 5 figure

    Possible spin-orbit driven spin-liquid ground state in the double perovskite phase of Ba3YIr2O9

    Get PDF
    We report the structural transformation of hexagonal Ba3YIr2O9 to a cubic double perovskite form (stable in ambient conditions) under an applied pressure of 8GPa at 1273K. While the ambient pressure (AP) synthesized sample undergoes long-range magnetic ordering at 4K, the high pressure(HP) synthesized sample does not order down to 2K as evidenced from our susceptibility, heat capacity and nuclear magnetic resonance (NMR) measurements. Further, for the HP sample, our heat capacity data have the form gamma*T+beta*T3 in the temperature (T) range of 2-10K with the Sommerfeld coefficient gamma=10mJ/mol-Ir K2. The 89Y NMR shift has no T-dependence in the range of 4-120K and its spin-lattice relaxation rate varies linearly with T in the range of 8-45K (above which it is T-independent). Resistance measurements of both the samples confirm that they are semiconducting. Our data provide evidence for the formation of a 5d based, gapless, quantum spin-liquid (QSL) in the cubic (HP) phase of Ba3YIr2O9. In this picture, the T term in the heat capacity and the linear variation of 89Y 1/T1 arises from excitations out of a spinon Fermi surface. Our findings lend credence to the theoretical suggestion [G. Chen, R. Pereira, and L. Balents, Phys. Rev. B 82, 174440 (2010)] that strong spin-orbit coupling can enhance quantum fluctuations and lead to a QSL state in the double perovskite lattice.Comment: 6 pages 5 figure

    Neutron scattering study of novel magnetic order in Na0.5CoO2

    Full text link
    We report polarized and unpolarized neutron scattering measurements of the magnetic order in single crystals of Na0.5CoO2. Our data indicate that below T_N=88 K the spins form a novel antiferromagnetic pattern within the CoO2 planes, consisting of alternating rows of ordered and non-ordered Co ions. The domains of magnetic order are closely coupled to the domains of Na ion order, consistent with such a two-fold symmetric spin arrangement. Magnetoresistance and anisotropic susceptibility measurements further support this model for the electronic ground state.Comment: 4 pages, 4 figure
    corecore