2,631 research outputs found
On Killing vectors in initial value problems for asymptotically flat space-times
The existence of symmetries in asymptotically flat space-times are studied
from the point of view of initial value problems. General necessary and
sufficient (implicit) conditions are given for the existence of Killing vector
fields in the asymptotic characteristic and in the hyperboloidal initial value
problem (both of them are formulated on the conformally compactified space-time
manifold)
A Scheme to Numerically Evolve Data for the Conformal Einstein Equation
This is the second paper in a series describing a numerical implementation of
the conformal Einstein equation. This paper deals with the technical details of
the numerical code used to perform numerical time evolutions from a "minimal"
set of data.
We outline the numerical construction of a complete set of data for our
equations from a minimal set of data. The second and the fourth order
discretisations, which are used for the construction of the complete data set
and for the numerical integration of the time evolution equations, are
described and their efficiencies are compared. By using the fourth order scheme
we reduce our computer resource requirements --- with respect to memory as well
as computation time --- by at least two orders of magnitude as compared to the
second order scheme.Comment: 20 pages, 12 figure
Local twistors and the conformal field equations
This note establishes the connection between Friedrich's conformal field
equations and the conformally invariant formalism of local twistors.Comment: LaTeX2e Minor corrections of misprints et
Bone Histology in Dysalotosaurus lettowvorbecki (Ornithischia: Iguanodontia) – Variation, Growth, and Implications
BACKGROUND: Dysalotosaurus lettowvorbecki is a small ornithopod dinosaur known from thousands of bones and several ontogenetic stages. It was found in a single locality within the Tendaguru Formation of southeastern Tanzania, possibly representing a single herd. Dysalotosaurus provides an excellent case study for examining variation in bone microstructure and life history and helps to unravel the still mysterious growth pattern of small ornithopods. METHODOLOGY/PRINCIPAL FINDINGS: Five different skeletal elements were sampled, revealing microstructural variation between individuals, skeletal elements, cross sectional units, and ontogenetic stages. The bone wall consists of fibrolamellar bone with strong variability in vascularization and development of growth cycles. Larger bones with a high degree of utilization have high relative growth rates and seldom annuli/LAGs, whereas small and less intensively used bones have lower growth rates and a higher number of these resting lines. Due to the scarcity of annuli/LAGs, the reconstruction of the life history of Dysalotosaurus was carried out using regularly developed and alternating slow and fast growing zones. Dysalotosaurus was a precocial dinosaur, which experienced sexual maturity at ten years, had an indeterminate growth pattern, and maximum growth rates comparable to a large kangaroo. CONCLUSIONS/SIGNIFICANCE: The variation in the bone histology of Dysalotosaurus demonstrates the influence of size, utilization, and shape of bones on relative growth rates. Annuli/LAGs are not the only type of annual growth cycles that can be used to reconstruct the life history of fossil vertebrates, but the degree of development of these lines may be of importance for the reconstruction of paleobehavior. The regular development of annuli/LAGs in subadults and adults of large ornithopods therefore reflects higher seasonal stress due to higher food demands, migration, and altricial breeding behavior. Small ornithopods often lack regularly developed annuli/LAGs due to lower food demands, no need for migration, and precocial behavior
General Relativistic Scalar Field Models in the Large
For a class of scalar fields including the massless Klein-Gordon field the
general relativistic hyperboloidal initial value problems are equivalent in a
certain sense. By using this equivalence and conformal techniques it is proven
that the hyperboloidal initial value problem for those scalar fields has an
unique solution which is weakly asymptotically flat. For data sufficiently
close to data for flat spacetime there exist a smooth future null infinity and
a regular future timelike infinity.Comment: 22 pages, latex, AGG 1
Sharing of heteroplasmies between human liver lobes varies across the mtDNA genome
Mitochondrial DNA (mtDNA) heteroplasmy (intra-individual variation) varies among different human tissues and increases with age, suggesting that the majority of mtDNA heteroplasmies are acquired, rather than inherited. However, the extent to which heteroplasmic sites are shared across a tissue remains an open question. We therefore investigated heteroplasmy in two liver samples (one from each primary lobe) from 83 Europeans, sampled at autopsy. Minor allele frequencies (MAF) at heteroplasmic sites were significantly correlated between the two liver samples from an individual, with significantly more sharing of heteroplasmic sites in the control region than in the non-control region. We show that this increased sharing for the control region cannot be explained by recent mutations at just a few specific heteroplasmic sites or by the possible presence of 7S DNA. Moreover, we carried out simulations to show that there is significantly more sharing than would be predicted from random genetic drift from a common progenitor cell. We also observe a significant excess of non-synonymous vs. synonymous heteroplasmies in the protein-coding region, but significantly more sharing of synonymous heteroplasmies. These contrasting patterns for the control vs. the non-control region, and for non-synonymous vs. synonymous heteroplasmies, suggest that selection plays a role in heteroplasmy sharing
Measurement of heavy-hole spin dephasing in (InGa)As quantum dots
We measure the spin dephasing of holes localized in self-assembled (InGa)As
quantum dots by spin noise spectroscopy. The localized holes show a distinct
hyperfine interaction with the nuclear spin bath despite the p-type symmetry of
the valence band states. The experiments reveal a short spin relaxation time
{\tau}_{fast}^{hh} of 27 ns and a second, long spin relaxation time
{\tau}_{slow}^{hh} which exceeds the latter by more than one order of
magnitude. The two times are attributed to heavy hole spins aligned
perpendicular and parallel to the stochastic nuclear magnetic field. Intensity
dependent measurements and numerical simulations reveal that the long
relaxation time is still obscured by light absorption, despite low laser
intensity and large detuning. Off-resonant light absorption causes a
suppression of the spin noise signal due to the creation of a second hole
entailing a vanishing hole spin polarization.Comment: accepted to be published in AP
- …