454 research outputs found

    A comparison of optical and radar measurements of mesospheric winds and tides

    Get PDF
    Optical measurements of mesospheric winds by Fabry‐Perot spectrometers, FPSs, at Mawson, 67.6°S 62.9°E, and Davis, 68.6°S 78.0°E, Antarctica are compared with similar measurements obtained using a spaced‐antenna MF radar at Davis. The FPSs observed the OH emission. Different analysis procedures, used to determine the mean wind, and amplitude and phase of the semidiurnal tide, have been compared. At these latitudes the diurnal tide is weak and the semi‐diurnal tide, although highly variable in amplitude, is usually the dominant periodicity. When comparing the amplitude and phase of the semidiurnal tide good agreement is obtained between measurements by the two instruments

    Replica theory for fluctuations of the activation barriers in glassy systems

    Full text link
    We consider the problem of slow activation dynamics in glassy systems undergoing a random first order phase transition. Using an effective potential approach to supercooled liquids, we determine the spectrum of activation barriers for entropic droplets. We demonstrate that fluctuations of the configurational entropy and of the liquid glass surface tension are crucial to achieve an understanding of the barrier fluctuations in glassy systems and thus are ultimatively responsible for the broad spectrum of excitations and heterogeneous dynamics in glasses. In particular we derive a relation between the length scale for dynamic heterogeneity and the related barrier fluctuations. Diluted entropic droplets are shown to have a Gaussian distribution of barriers, strongly suggesting that non-Gaussian behavior results from droplet-droplet interactions.Comment: 16 pages, 9 eps figure

    OH(6-2) spectra and rotational temperature measurements at Davis, Antarctica

    No full text
    International audienceThe OH(6-2) band was monitored during 1990 at Davis, Antarctica (68.6°S, 78.0°E) using a Czerny-Turner scanning spectrometer. Spectra obtained with a 0.15-nm bandwidth and wavelength steps of 0.005 nm have been recorded in an attempt to isolate auroral features. This has enabled detailed study of weak features in the region ?837.5?855.5 nm. These weak features can contribute to the apparent intensity of P-branch lines and to the background. Their presence is allowed for in our calculation of rotational temperature, but the P1(3) line is excluded because of significant contamination. An average temperature of 221±2 K is obtained from a selected data set of 104 spectra. The mid-winter average temperature, for the months of May, June and July, is 224±2 K, which is consistent with the 1986 CIRA model values for mid-winter at this height and latitude, but this result is dependent on the choice of transition probabilities. Preliminary assessments of seasonal and diurnal variations in rotational temperature and intensity are presented

    Hydroxyl (6?2) airglow emission intensity ratios for rotational temperature determination

    No full text
    International audienceOH(6?2) Q1/P1 and R1/P1 airglow emission intensity ratios, for rotational states up to j' = 4.5, are measured to be lower than implied by transition probabilities published by various authors including Mies, Langhoff et al. and Turnbull and Lowe. Experimentally determined relative values of j' transitions yield OH(6?2) rotational temperatures 2 K lower than Langhoff et al., 7 K lower than Mies and 13 K lower than Turnbull and Lowe.Key words: Atmospheric composition and structure (airglow and aurora; pressure, density and temperature)</p

    Assessing framing of uncertainties in water management practice

    Get PDF
    Dealing with uncertainties in water management is an important issue and is one which will only increase in light of global changes, particularly climate change. So far, uncertainties in water management have mostly been assessed from a scientific point of view, and in quantitative terms. In this paper, we focus on the perspectives from water management practice, adopting a qualitative approach. We consider it important to know how uncertainties are framed in water management practice in order to develop practice relevant strategies for dealing with uncertainties. Framing refers to how people make sense of the world. With the aim of identifying what are important parameters for the framing of uncertainties in water management practice, in this paper we analyze uncertainty situations described by decision-makers in water management. The analysis builds on a series of ÂżUncertainty DialoguesÂż carried out within the NeWater project with water managers in the Rhine, Elbe and Guadiana basins in 2006. During these dialogues, representatives of these river basins were asked what uncertainties they encountered in their professional work life and how they confronted them. Analysing these dialogues we identified several important parameters of how uncertainties get framed. Our assumption is that making framing of uncertainty explicit for water managers will allow for better dealing with the respective uncertainty situations. Keywords Framing - Uncertainty - Water management practic

    The Ultimate Fate of Supercooled Liquids

    Full text link
    In recent years it has become widely accepted that a dynamical length scale {\xi}_{\alpha} plays an important role in supercooled liquids near the glass transition. We examine the implications of the interplay between the growing {\xi}_{\alpha} and the size of the crystal nucleus, {\xi}_M, which shrinks on cooling. We argue that at low temperatures where {\xi}_{\alpha} > {\xi}_M a new crystallization mechanism emerges enabling rapid development of a large scale web of sparsely connected crystallinity. Though we predict this web percolates the system at too low a temperature to be easily seen in the laboratory, there are noticeable residual effects near the glass transition that can account for several previously observed unexplained phenomena of deeply supercooled liquids including Fischer clusters, and anomalous crystal growth near T_g

    Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement

    Get PDF
    The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change aims to keep global average temperature increases well below 2 °C of preindustrial levels in the Year 2100. Vital to its success is achieving a decrease in the abundance of atmospheric methane (CH4), the second most important anthropogenic greenhouse gas. If this reduction is to be achieved, individual nations must make and meet reduction goals in their nationally determined contributions, with regular and independently veriïŹable global stock taking. Targets for the Paris Agreement have been set, and now the capability must follow to determine whether CH4 reductions are actually occurring. At present, however, there are signiïŹcant limitations in the ability of scientists to quantify CH4 emissions accurately at global and national scales and to diagnose what mechanisms have altered trends in atmospheric mole fractions in the past decades. For example, in 2007, mole fractions suddenly started rising globally after a decade of almost no growth. More than a decade later, scientists are still debating the mechanisms behind this increase. This study reviews the main approaches and limitations in our current capability to diagnose the drivers of changes in atmospheric CH4 and, crucially, proposes ways to improve this capability in the coming decade. Recommendations include the following: (i) improvements to process‐based models of the main sectors of CH4 emissions—proposed developments call for the expansion of tropical wetland ïŹ‚ux measurements, bridging remote sensing products for improved measurement of wetland area and dynamics, expanding measurements of fossil fuel emissions at the facility and regional levels, expanding country‐ speciïŹc data on the composition of waste sent to landïŹll and the types of wastewater treatment systems implemented, characterizing and representing temporal proïŹles of crop growing seasons, implementing parameters related to ruminant emissions such as animal feed, and improving the detection of small ïŹres associated with agriculture and deforestation; (ii) improvements to measurements of CH4 mole fraction and its isotopic variations—developments include greater vertical proïŹling at background sites, expanding networks of dense urban measurements with a greater focus on relatively poor countries, improving the precision of isotopic ratio measurements of 13CH4, CH3D, 14CH4, and clumped isotopes, creating isotopic reference materials for international‐scale development, and expanding spatial and temporal characterization of isotopic source signatures; and (iii) improvements to inverse modeling systems to derive emissions from atmospheric measurements—advances are proposed in the areas of hydroxyl radical quantiïŹcation, in systematic uncertainty quantiïŹcation through validation of chemical transport models, in the use of source tracers for estimating sector‐level emissions, and in the development of time and spaceresolved national inventories. These and other recommendations are proposed for the major areas of CH4 science with the aim of improving capability in the coming decade to quantify atmospheric CH4 budgets on the scales necessary for the success of climate policies. Plain Language Summary Methane is the second largest contributor to climate warming from human activities since preindustrial times. Reducing human‐made emissions by half is a major component of the 2015 Paris Agreement target to keep global temperature increases well below 2 °C. In parallel to the methane emission reductions pledged by individual nations, new capabilities are needed to determine independently whether these reductions are actually occurring and whether methane concentrations in the atmosphere are changing for reasons that are clearly understood. At present signiïŹcant challenges limit the ability of scientists to identify the mechanisms causing changes in atmospheric methane. This study reviews current and emerging tools in methane science and proposes major advances needed in the coming decade to achieve this crucial capability. We recommend further developing the models that simulate the processes behind methane emissions, improving atmospheric measurements of methane and its major carbon and hydrogen isotopes, and advancing abilities to infer the rates of methane being emitted and removed from the atmosphere from these measurements. The improvements described here will play a major role in assessing emissions commitments as more cities, states, and countries report methane emission inventories and commit to speciïŹc emission reduction targets. </div
    • 

    corecore