3,114 research outputs found
Present status of the geochronology of the early Precambrian of South India
The present status of Precambrian geochronology of South India was summarized. Support was offered for Raith's conclusion of an extensive 3.3 to 3.4-Ga tonalite-forming event. Evidence that the Sargur supracrustal sequence predates this event, however, remains equivocal. The only reliably dated supracrustal rocks are the similar to 3.0-Ga Chitradurga acid volcanics, and these are separated from the older Bababudan supracrustals by a major gneiss-forming event. A major unsolved problem relates to the timing of the Sargur supracrustals in relation to the basal units of the Dharwar succession. An appeal was made for more geochronological work on South Indian samples
Learning to detect an oddball target with observations from an exponential family
The problem of detecting an odd arm from a set of K arms of a multi-armed
bandit, with fixed confidence, is studied in a sequential decision-making
scenario. Each arm's signal follows a distribution from a vector exponential
family. All arms have the same parameters except the odd arm. The actual
parameters of the odd and non-odd arms are unknown to the decision maker.
Further, the decision maker incurs a cost for switching from one arm to
another. This is a sequential decision making problem where the decision maker
gets only a limited view of the true state of nature at each stage, but can
control his view by choosing the arm to observe at each stage. Of interest are
policies that satisfy a given constraint on the probability of false detection.
An information-theoretic lower bound on the total cost (expected time for a
reliable decision plus total switching cost) is first identified, and a
variation on a sequential policy based on the generalised likelihood ratio
statistic is then studied. Thanks to the vector exponential family assumption,
the signal processing in this policy at each stage turns out to be very simple,
in that the associated conjugate prior enables easy updates of the posterior
distribution of the model parameters. The policy, with a suitable threshold, is
shown to satisfy the given constraint on the probability of false detection.
Further, the proposed policy is asymptotically optimal in terms of the total
cost among all policies that satisfy the constraint on the probability of false
detection
Bayesian Gait Optimization for Bipedal Locomotion
One of the key challenges in robotic bipedal locomotion is finding gait parameters that optimize a desired performance criterion, such as speed, robustness or energy efficiency. Typically, gait optimization requires extensive robot experiments and specific expert knowledge. We propose to apply data-driven machine learning to automate and speed up the process of gait optimization. In particular, we use Bayesian optimization to efficiently find gait parameters that optimize the desired performance metric. As a proof of concept we demonstrate that Bayesian optimization is near-optimal in a classical stochastic optimal control framework. Moreover, we validate our approach to Bayesian gait optimization on a low-cost and fragile real bipedal walker and show that good walking gaits can be efficiently found by Bayesian optimization. © 2014 Springer International Publishing
Enhancements to the Open Access Spectral Band Adjustment Factor Online Calculation Tool for Visible Channels
With close to 40 years of satellite observations, from which, cloud, land-use, and aerosol parameters can be measured, inter-consistent calibrations are needed to normalize retrievals across satellite records. Various visible-sensor inter-calibration techniques have been developed that utilize radiometrically stable Earth targets, e.g., deep convective clouds and desert/polar ice pseudo-invariant calibration sites. Other equally effective, direct techniques for intercalibration between satellite imagers are simultaneous nadir overpass comparisons and ray-matched radiance pairs. Combining independent calibration results from such varied techniques yields robust calibration coefficients, and is a form of self-validation. One potential source of significant error when cross-calibrating satellite sensors, however, are the often small but substantial spectral discrepancies between comparable bands, which must be accounted for. As such, visible calibration methods rely on a Spectral Band Adjustment Factor (SBAF) to account for the spectral-response function- induced radiance differences between analogous imagers. The SBAF is unique to each calibration method as it is a function of the Earth-reflected spectra. In recent years, NASA Langley pioneered the use of SCIAMACHY-, GOME-2-, and Hyperion-retrieved Earth spectra to compute SBAFs. By carefully selecting hyperspectral footprints that best represent the conditions inherent to an inter-calibration technique, the uncertainty in the SBAF is greatly reduced. NASA Langley initially provided the Global Space-based Inter-calibration System processing and research centers with online SBAF tools, with which users select conditions to best match their calibration criteria. This article highlights expanded SBAF tool capabilities for visible wavelengths, with emphasis on the use of the spectral range filtering for the purpose of separating scene conditions for the channel that the SBAF is needed based on the reflectance values of other bands. In other words, spectral filtering will enable better scene-type selection for bands where scene determination is difficult without information from other channels, which should prove valuable to users in the calibration community
The complexity of dominating set reconfiguration
Suppose that we are given two dominating sets and of a graph
whose cardinalities are at most a given threshold . Then, we are asked
whether there exists a sequence of dominating sets of between and
such that each dominating set in the sequence is of cardinality at most
and can be obtained from the previous one by either adding or deleting
exactly one vertex. This problem is known to be PSPACE-complete in general. In
this paper, we study the complexity of this decision problem from the viewpoint
of graph classes. We first prove that the problem remains PSPACE-complete even
for planar graphs, bounded bandwidth graphs, split graphs, and bipartite
graphs. We then give a general scheme to construct linear-time algorithms and
show that the problem can be solved in linear time for cographs, trees, and
interval graphs. Furthermore, for these tractable cases, we can obtain a
desired sequence such that the number of additions and deletions is bounded by
, where is the number of vertices in the input graph
Recommended from our members
High rate of extrapair paternity in a human population demonstrates diversity in human reproductive strategies.
Among nonhuman species, social monogamy is rarely accompanied by complete fidelity. Evolutionary theory predicts that the rate of extrapair paternity (EPP) should vary according to socioecological conditions. In humans, however, geneticists contend that EPP is negligible and relatively invariable. This conclusion is based on a limited set of studies, almost all of which describe European-descent groups. Using a novel, double-blind method designed in collaboration with a community of Himba pastoralists, we find that the rate of EPP in this population is 48%, with 70% of couples having at least one EPP child. Both men and women were very accurate at detecting cases of EPP. These data suggest that the range of variation in EPP across human populations is substantially greater than previously thought. We further show that a high rate of EPP can be accompanied by high paternity confidence, which highlights the importance of disaggregating EPP from the notion of "cuckoldry.
Ligation of anti-cancer drugs to self-assembling ultrashort peptides by click chemistry for localized therapy
Self-assembling ultrashort peptides from aliphatic amino acids were functionalized with platinum anti-cancer drugs by click chemistry. Oxaliplatin-derived hybrid peptide hydrogels with up to 40% drug loading were tested for localized breast cancer therapy. Stably injected gels showed significant tumor growth inhibition in mice and a better tolerance compared to the free platinum drug
Spin Gaps in Coupled t-J Ladders
Spin gaps in coupled - ladders are investigated by exact
diagonalization of small clusters up to 48 sites. At half-filling, the
numerical results for the triplet excitation spectrum are in very good
agreement with a second order perturbation expansion in term of small
inter-ladder and intra-ladder exchange couplings between rungs
(). The band of local triplet excitations moving
coherently along the ladder (with momenta close to ) is split by the
inter-ladder coupling. For intermediate couplings finite size scaling is used
to estimate the spin gap. In the isotropic infinite 4-chain system (two coupled
ladders) we find a spin gap of , roughly half of the single ladder
spin gap. When the system is hole doped, bonding and anti-bonding bound pairs
of holes can propagate coherently along the chains and the spin gap remains
finite.Comment: 11 pages, 5 figures, uuencoded form of postscript files of figures
and text, LPQTH-94/
The Characterization of Deep Convective Cloud Albedo as a Calibration Target Using MODIS Reflectances
There are over 25 years of historical satellite data available to climate analysis. The historical satellite data needs to be well calibrated, especially in the visible, where there is no onboard calibration on operational satellites. The key to the vicarious calibration of historical satellites relies on invariant targets, such as the moon, Dome C, and deserts. Deep convective clouds (DCC) also show promise of being a stable invariant or predictable target viewable by all satellites, since they behave as solar diffusers. However DCC have not been well characterized for calibration. Ten years of well-calibrated MODIS is now available. DCC can easily be identified using IR thresholds, where the IR calibration can be traced to the onboard black-bodies. The natural variability of DCC albedo will be analyzed geographically and seasonally, especially difference of convection initiated over land or ocean. Functionality between particle size and ozone absorption with DCC albedo will be examined. Although DCC clouds are nearly Lambertion, the angular distribution of reflectances will be sampled and compared with theoretical models. Both Aqua and Terra MODIS DCC angular models will be compared for consistency. Normalizing angular geostationary DCC reflectances, which were calibrated against MODIS, with SCIAMACHY spectral reflectances and comparing them to MODIS DCC reflectances will inspect the usage of DCC albedos as an absolute calibration target
- …
