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Abstract. One of the key challenges in robotic bipedal locomotion is finding gait
parameters that optimize a desired performance criterion, such as speed, robust-
ness or energy efficiency. Typically, gait optimization requires extensive robot
experiments and specific expert knowledge. We propose to apply data-driven ma-
chine learning to automate and speed up the process of gait optimization. In par-
ticular, we use Bayesian optimization to efficiently find gait parameters that opti-
mize the desired performance metric. As a proof of concept we demonstrate that
Bayesian optimization is near-optimal in a classical stochastic optimal control
framework. Moreover, we validate our approach to Bayesian gait optimization on
a low-cost and fragile real bipedal walker and show that good walking gaits can
be efficiently found by Bayesian optimization.
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1 Introduction

Bipedal walking and running are versatile and fast locomotion gaits. Despite its high
mobility, bipedal locomotion is rarely used in real-world robotic applications. Key chal-
lenges in bipedal locomotion include balance control, foot placement, and gait opti-
mization. In this paper, we focus on gait optimization, i.e., finding good parameters for
the gait of a robotic biped.

Due to the partially unpredictable effects and correlations among the gait parame-
ters, gait optimization is often an empirical, time-consuming and strongly robot-specific
process. In practice, gait optimization often translates into a trial-and-error process
where choosing the parameters is either an educated guess by a human expert or a sys-
tematic search, such as grid search. As a result, gait optimization may require consider-
able expert knowledge, engineering effort and time-consuming experiments. Addition-
ally, the effectiveness of the resulting gait is restricted by the assumptions made during
the controller design process, regarding the environment, the hardware and the perfor-
mance criteria. Therefore, a change in the environment (e.g., different floor surfaces),
a variation in the hardware response (e.g., decline in performances of the hardware, re-
placement of a motor or differences in the calibration) or the choice of a performance
criterion (e.g., walking speed, energy efficiency, robustness), which differs from the



one used during the controller design
process, often requires searching for new,
more appropriate, gait parameters.

The search for appropriate gait pa-
rameters can be formulated as an opti-
mization problem. Such a problem for-
mulation in conjunction with an appro-
priate optimization method allows to au-
tomate the search for optimal gait param-
eters. Therefore, it is a valuable and prin-
cipled approach to designing controllers
and reduces the need for engineering ex-
pert knowledge. To date, automatic gait
optimization methods, such as gradient
descent methods [?] and genetic algo-
rithms [?], have been used for design-
ing efficient gaits for locomotion. How-
ever, gradient descent based methods [?]
might not find the optimal solution for
an objective function with multiple lo-
cal minima, and the computation of the
gradient is required. Furthermore, many
global optimization approaches require
a large number of interactions and are,
therefore, impractical to apply to fragile
robots. For example, genetic algorithms evaluate multiple sets of parameters from the
population in each iteration [?]. Since a large number of interactions can wear the robot
out, extensive experiments may be economically infeasible or require an impractical
amount of time. Hence, in practice, it is often essential to keep the number of interac-
tions with the robot as small as possible.

Fig. 1: The bio-inspired dynamical bipedal
walker Fox. Using Bayesian optimization,
we found reliable and fast walking gaits
with a velocity of up to 0.45 m/s.

To overcome this practical limitation on the number of possible interactions, we
propose to use Bayesian optimization for efficient bipedal gait optimization. Bayesian
optimization is a state-of-the-art global optimization method [?,?,?] that can be applied
to problems where it is vital to optimize a performance criterion while keeping the
number of evaluations of the system small, e.g., when an evaluation requires an expen-
sive interaction with a robot. Bayesian optimization has been successfully applied to
sensor-set selection [?] and gait optimization for quadrupeds [?] and snake robots [?].
Bayesian optimization makes efficient use of past interactions (experiments) by learning
a probabilistic (surrogate) model of the function to optimize. Subsequently, the learned
surrogate model is used for finding optimal parameters without the need to evaluate
the expensive (true) function. By exploiting the learned model, Bayesian optimization,
therefore, often requires fewer interactions, i.e., evaluations of the true objective func-
tion, than other optimization methods [?]. Bayesian optimization can also make good
use of prior knowledge, such as expert knowledge or data from related environments or
hardware, by directly integrating it into the prior of the learned surrogate model. More-



over, unlike most optimization methods, it can re-use any collected interaction data set,
e.g., whenever we want to change the performance criterion.

In this paper, we demonstrate that Bayesian optimization is a promising approach
for gait optimization. In Section ??, as a proof of concept, we apply Bayesian optimiza-
tion to a well-studied stochastic optimal control task, i.e., stochastic Linear-Quadratic
Regulation (LQR) [?], where an optimal solution can be computed. We demonstrate
that Bayesian optimization successfully finds near-optimal solutions for the stochastic
LQR problem quickly, reproducibly and reliably. In Section ??, we show that Bayesian
optimization can be used for imitation of trajectories in the context of bipedal walk-
ing. Given a reference trajectory we find controller parameters that result in a gait that
closely resembles the reference trajectory. In Section ??, we apply Bayesian optimiza-
tion to gait optimization for robotic bipedal locomotion. Experimental results on the
bio-inspired biped Fox (Figure ??) demonstrate that Bayesian optimization finds good
gait parameters in a small number of experiments. Moreover, the learned controller
results in a better gait compared to previous hand-crafted controllers. The use of an ef-
ficient gait optimization method for bipedal locomotion greatly alleviates the need for
extensive parameter search and reduces the requirement of expert knowledge.

2 Efficient Gait Optimization

The search for appropriate parameters for a controller and/or trajectory representation
can be formulated as an optimization problem, such as the minimization

minimize f(0) (1)
OcRd
of an objective function f with respect to the parameters 6. In the case of gait opti-
mization, @ are the parameters of the gait controller, while the objective function f is
a performance criterion, such as the walking speed, energy consumption or robustness.
Note that evaluating the objective function f for a given set of parameters requires a
physical interaction with the robot.
The considered gait optimization problem has the following properties:

1. Zero-order objective function. When evaluating the objective function f the value
of the function f(0) is available, but not the gradient information d f(0)/d6 with
respect to the parameters. The use of gradient information is generally desirable
in local optimization as it leads to faster convergence than zero-order methods.
Thus, it is common to approximate the gradient using finite differences. However,
finite differences requires evaluating the objective function f multiple times. Since
each evaluation requires interactions with the robot, the number of robot experi-
ments quickly becomes excessive, rendering the whole family of efficient gradient
descent-based methods (e.g., gradient descent, conjugate gradient, L-BFGS [?])
undesirable for our task.

2. Stochastic objective function. The evaluation of the objective function is inher-
ently stochastic due to noisy measurements and variable initial conditions. There-
fore, any suitable optimization method needs to take into consideration that two
evaluations of the same parameters 6 can yield two different values f1(0) # f2(6).



3. Global solution. Ideally, we strive to find the global minimum of the objective
function. However, no assumption can be made about the presence of multiple local
minima or about the convexity of the objective function.

All these characteristics make this family of problems a very challenging optimiza-
tion task. A classical way of dealing with this family of problems is to evaluate the
objective function f at an evenly-spaced grid in the parameter space. Sequentially, the
grid search is refined in the most promising intervals of the space. Another possibility
is to use random search, which can perform well [?], e.g., when the objective function
has an intrinsic lower dimensionality. However, both methods typically require an im-
practical number of function evaluations/robot interactions to find good gait parameters.
In contrast, Bayesian optimization [?] naturally deals with this family of optimization
problems and finds solutions in a small number of evaluations of the objective function.

2.1 Bayesian Optimization

Bayesian optimization, as summa- Ajeorithm 1: Bayesian optimization
rized in Algorithm ??, is an iter-

ative model-based global optimiza- ' ]D. — i.f avai.lab]e: {0., f0)}
tion method [2,2,2.2.2]. After each > Prior <— if available: Prior of the model

SN 9% 9% while optimize do

evaluation of the objective function

f, a surrogate model of f is built 3 Train a model from D R
(line 3 of Algorithm 2?). In partic- 4 | Compute response surface f(6)
ular, the model maps parameters 6 5 Compute acquisition surface c(6)
to corresponding function evalua- 6 Find " that optimizes o(6)
tions f(8). From the resulting model ~ 7 | Evaluate f at 8"
the response surface f() is com- 8 | Add {6", f(6")} to D
puted (line 4) and used for a “virtual”
optimization process
minimize f 9). 2)
6cR

In this context, “virtual” indicates that optimizing the response surface f (0) with re-
spect to the parameters 8 does not need interactions with the real system, but only eval-
uations of the learned model. Only when a new set of parameters 8" has been selected
from the virtual optimization process of the response surface f (0), they are evaluated
on the real objective function f (line 7). The new data {0*, f(6™)} is used to update the
model of the objective function (line 8).

A variety of different models, such as linear functions or splines [?], have been used
in the past to map 8 — f(0). However, the use of a probabilistic model allows to
model noisy observations and to explicitly take the uncertainty about the model itself
into account. Additionally, such a probabilistic framework allows to use priors that
encode available expert knowledge or information from related systems, such as optimal
parameter priors to a change in the system, e.g., after replacing a motor or changing the
walking surface. In this paper, we use Gaussian processes (GPs) as the probabilistic
model for the Bayesian optimization.
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Fig. 2: Example of the Bayesian optimization process for minimizing an unknown 1-D
objective function f (red curve). The 95% confidence of the model prediction is rep-
resented by the blue area. The model is initialized with 4 previously evaluated param-
eters 6 and corresponding function values f(6). The location of the next parameter to
be evaluated is represented by the green dashed line. At each iteration, the model is
updated using all the previously evaluated parameters (red dots). After a few iterations,
Bayesian optimization found the global minimum of the unknown objective function.

When using a probabilistic model, the response surface f (0) is a probability distri-
bution and cannot directly be optimized. Instead, the acquisition function o(-) is used
for the virtual optimization of the probabilistic GP. The purpose of the acquisition func-
tion is two-fold: First, it maps the GP onto a single surface, the acquisition surface ()
to be optimizedﬁ Second, the GP expresses model uncertainty, which is used to trade
off exploration and exploitation. Thereby, the minimization of the objective function
from Equation (??) can be rephrased as the minimization of the acquisition surface

minimize o(0). (3

OcRd

As summarized in Algorithm ??, in Bayesian optimization, a GP model 8 — p(f(0))
is learned from the parameters 6 to the corresponding measurements f () of the objec-
tive function (line 3 of Algorithm ??). This model is used to predict the response sur-
face f(0) (line 4 of Algorithm ??) and the corresponding acquisition surface «(6) (line
5 of Algorithm ??), once the response surface f (0) is mapped through the acquisition
function «.. Using a global optimization technique, the minimum 6" = argmin, «(0)
of the acquisition surface « is computed (line 6 of Algorithm ??) without any evalu-
ation of the true objective function f, e.g., no robot interaction is required, see Equa-
tion (2?). The optimal parameters 0 are evaluated (line 7 of Algorithm ??) on the

SThe correct notation would be a.(f(8)), but we use a(8) for notational convenience.



robot and, together with the resulting measurement f(60*), added to the dataset D (line
8 of Algorithm ??). Past evaluations can be used to initialize the dataset ID (line 1 of
Algorithm ??), as well as the prior of the GP model (line 2 of Algorithm ??).

Figure ?? illustrates the Bayesian optimization process for a 1-D function. The hor-
izontal axis represents the parameter space. The red curve shows the true, but unknown,
objective function f and the blue area represents the 95% confidence bound of the GP
model of f. The GP model is trained on a small data set, represented by the red dots.
From this model the acquisition function is computed. The minimum of the acquisition
function determines the next parameter set 8 to be evaluated (dashed green line). Subse-
quently, the GP model of the objective function is updated, and the process is restarted.
After a few iterations, Bayesian optimization found the global minimum.

2.2 Gaussian Process Model for Objective Function

To create the model that maps 6 — f(0), we make use of Bayesian, non-parametric
Gaussian Process regression [?]. Such a GP is a distribution over functions

f(8) ~ GP (my, ky) )
and fully defined by a mean m ¢ and a covariance function k. As prior mean we choose
my = 0, while the chosen covariance function ks is the squared exponential with

automatic relevance determination and Gaussian noise
k(0,,0,) = ‘7]2‘ eXp(_%(ep_0q>TA_1(9p_0q))+Uzzu§pq
with A = diag([17, ..., [B]). Here, [; are the characteristic length-scales, o7 is the vari-

ance of the latent function f and o2 the measurement noise variance. The GP predictive
distribution at a test input @, is

p(f(e*)“D, 0*) = N(N(H*)ng(e*)) ) (5)
w@,) =kr'K 'y,  0%*0,) =k —kIK 'k,. (6)
Given n training inputs X = [04,...,6,] and corresponding training targets y =

[f(61), ..., f(6,)], we define the training data set D = {X,y}. Moreover, K is the
matrix composed as K;; = k(0;,0;), k.. = k(0+,60,) and k., = k(X,6,). In our
experiments, we compute the hyperparameters of the covariance function by evidence
maximization [?].

2.3 Acquisition Function

A number of acquisition functions «(8) exists, such as probability of improvement [?],
expected improvement [?], upper confidence bound [?] and entropy-based improve-
ments [?]. In this paper, we use the upper confidence bound (UCB) where the acquisi-
tion surface is defined as

a(8) = u(6) — ko (6). ™)

where « is a free parameter that trades off exploration and exploitation. We determine
automatically according to the GP-UCB [?,?] algorithm, which also allows to compute
regret bounds. An extensive comparison of other acquisition functions with the biped
considered in Section ?? can be found in [?].



2.4 Optimizing the Acquisition Surface

Once the acquisition surface in Equation (??) is computed (line 5 of Algorithm ?7?), it
is still necessary to find the parameters 8" of its minimum (line 6 of Algorithm ??).
To find this minimum, we use a standard global optimizer. Note that the global opti-
mization problem in Equation (??) is different from the original global optimization
problem defined in Equation (??): First, the measurements in Equation (??) are noise
free because the objective function in Equation (??) is an analytical model. Second,
there is no restriction in terms of how many evaluations we can perform: Evaluating
the acquisition surface only requires to evaluate the model, but no interactions with the
physical system (e.g., the robot). Third, we can compute the derivatives of any order, ei-
ther with finite differences or analytically. Therefore, we are no longer restricted to the
use of zero-order optimization methods. As a result, any global optimizer that fulfills
these characteristics can be used. In particular, in our experiments we used DIRECT [?]
to find the approximate global minimum, followed by L-BFGS [?] to refine it.

3 Experimental Setup & Results

In this section, we present the experiments performed and results obtained to validate
Bayesian optimization for automatic gait optimization. First, we evaluate Bayesian op-
timization on a classical stochastic optimal control problem: a discrete-time stochastic
linear-quadratic regulator (LQR). Since an optimal solution to the stochastic LQR sys-
tem can be computed analytically, we evaluate the quality of the solution found by
Bayesian optimization to this baseline. Second, we apply Bayesian optimization to a
trajectory imitation problem in the context of bipedal walking. Given a reference trajec-
tory, we demonstrate that Bayesian optimization finds suitable parameters of rhythmic
motor primitives (RMPs) to replicate the trajectory. We consider the case of demon-
strated gait trajectories of a simulated biped. Third, we present and discuss the ex-
perimental results of Bayesian optimization applied to gait optimization for bipedal
locomotion on the robot shown in Figure 2?.

3.1 Proof of Concept: Stochastic Linear-Quadratic Regulator

The linear-quadratic regulator is a classical stochastic optimal control problem. The
discrete-time stochastic LQR problem consists of a linear dynamical system

Tip1 = Ay + Byuy + wy, t=0,1,..,.N -1, 3
and a quadratic cost
T N=1 1 T
J=xzNQneN + tho (2 Quze + u/ Rouy) | (€))

where the noise w; ~ N(O, Z’) and the matrices R; > 0, Q, > 0, A;, B, and are
given and, in this paper, assumed to be time invariant. The objective is to find controls



Table 1: Performance of Bayesian optimization compared to the exact solution for the
stochastic LQR problem.
Cost incurred by the analytical solution
Cost incurred by Bayesian optimization

-5.57 £0.01
-5.54 £ 0.01
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Fig. 3: Average over 50 experiments of best parameters find during the minimization
process for a stochastic LQR using Bayesian optimization. The average objective value
function (red curve) during the optimization process and the average analytical solution
(green dashed line) are shown.

U, - . . , wy—1 that minimize Equation (??). The control signal w; is a linear function
of the state x4, computed for each time step as

uy = Lz, ,

where L; is a gain matrix. An analytical optimal solution to minimize the quadratic cost
J exists for the stochastic linear-quadratic regulator [?].

To assess the performance of Bayesian optimization, we consider a stochastic LQR
system with £ € R?, u € R*. The stationary gain matrix L € R**2 defines a set
of 8 free parameters to be determined by Bayesian optimization. We compare our so-
lution with the corresponding analytical solution for the stationary gain matrix L. For
Bayesian optimization, we define the objective function as

f(8) =log(J/N), (10)

where the parameters 6 to optimize are the stationary gain matrix L € R**2, To initial-
ize Bayesian optimization, 15 uniformly randomly sampled gain matrices L were used.
Moreover, the initial state g ~ N (O7 I ) and the matrices A, B, Q and R were fixed.

We performed 50 independent experiments: For each experiment, we selected the
best parameters found after 200 steps of Bayesian optimization. These parameters were
then evaluated on the stochastic LQR system 100 times. Table ?? shows the mean value
for the objective function and its standard deviation for both the analytical solutions
and the ones obtained through Bayesian optimization. We conclude that Bayesian opti-
mization finds near-optimal solutions for the stochastic LQR problem. Additionally, as
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Fig.4: Example of Bayesian optimization for a stochastic LQR. The objective value
function (red curve) and the 95% confidence of the model prediction (blue area) are
shown during the optimization process, additionally, the analytical solution (green
dashed line) is shown as a reference.

shown in Figure ??, the average over the 50 experiments of the best parameters found
so far in the optimization process suggests that Bayesian optimization reliably quickly
finds a near-optimal solution. In Figure ??, an example of the minimization process of
Bayesian optimization for the stochastic LQR problem is shown. The objective func-
tion is shown as a function of the number of evaluations. Each evaluation requires to
compute the objective function f in Equation (??) for the current parameters § = L.
The analytical minimum is shown by the green dashed line, the shaded area shows the
95% confidence bound of the predicted objective function p(f(8)) for the parameters
selected in the ith evaluation. The red line shows the actual measured function value
£(0). Initially, the model was relatively uncertain. With an increasing number of exper-
iments the model became more certain, and the optimization process converged to the
optimal solution.

We conclude that Bayesian optimization can efficiently find gain matrices L that
solve the stochastic LQR problem. Additionally, with Bayesian optimization it is possi-
ble to find stationary solutions for cases with a short time horizon /N where no analytical
optimal solution is available: The algebraic Riccati equation is not applicable for finite
time horizons [V, and the discrete time Riccati equation, which can be applied, does not
produce a stationary solution.

3.2 Bayesian Optimization for Trajectory Imitation

In the following, we apply Bayesian optimization to learning gaits for bipedal robots
based on trajectory imitation. Given a reference trajectory, the objective is to find gait
parameters such that the biped’s trajectory closely resembles the desired reference tra-
jectory. Gait trajectories are modeled by rhythmic motor primitives. The parameters of
the rhythmic motor primitives are typically found by imitation learning [?]. In this pa-
per, we pose this type of trajectory imitation as a Bayesian optimization problem to find
the rhythmic motor primitives parameters.
Rhythmic Motor Primitives (RMPs) are parametrizable dynamical systems that model

and generate rhythmic trajectories [?]. RMPs have been used to model and learn bipedal
trajectories [?,?] and other rhythmic trajectories, such as drumming [?] and ball pad-
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dling [?]. An RMP models a rhythmic trajectory as a modulated limit cycle

G = a.(B.(g — q) — 7q) + 6y, (11)
~—~

Attractor function Forcing function

where g, ¢ and g can be the joint angles of a robot and their first and second-order
derivatives. The attractor function is a limit cycle with timing constants «, and .. The
time period of the rhythmic action is 7 and can be extracted by frequency analysis of
the demonstrations. The amplitude signal 7 is used to modulate or scale the amplitude
of the learned trajectory. The parameter g is the baseline of the rhythmic trajectory.
The forcing function modulates the at-
tractor function to generate the desired
trajectory. The forcing function consists
of weight vectors 8 and nonlinear basis
functions 1. To model a trajectory us-
ing RMPs, we optimize the weight vec-
tors that modulate the attractor function,
such that the RMP generates the desired
reference trajectory.

The biped used in simulation is an Fig.5: Gait imitation using Bayesian opti-
under-actuated three link biped (two mization. Example of desired trajectory T
links for limbs and one for torso) with including random noise (blue circle curve)
five degrees of freedom, two of which are compared with the trajectory generated by
actuated. The dynamics are given in [?]. the RMP with optimized parameters (red
The demonstrated trajectories 7 for the crosses curve). The two curves are almost
lower limbs were assumed sinusoidal be- identical.
tween +10° to —10 °, such that at each
time instant they were equal in magnitude but opposite in sign. The torso’s desired tra-
jectory was assumed constant, bending forward at +30 °. We used RMPs with 5 basis
functions to model each trajectory. In this set-up, we optimized only the RMP weight
vectors 0 in Equation (??) using the objective

Angle (rad)

Time (s)

f(8) = exp (|7 —RMP(0)|?) , (12)

which penalizes the distance between the trajectory generated by the model RMP(6)
and a noisy demonstrated trajectory 7. Equation (??) was evaluated using 10 cycles
of the trajectory. Bayesian optimization converged after about 50 evaluations. The re-
sulting trajectory generated by the optimized RMP parameters closely resembled the
desired reference trajectory as shown in Figure ??. Using the generated parameters the
biped walked smoothly.

While other approaches (such as least squares and locally weighted regression) exist
to solve trajectory imitation for RMPs, our result suggests that also Bayesian optimiza-
tion is suitable for trajectory imitation. For a given trajectory Bayesian optimization can
automatically learn the parameters of an RMP to replicate it.
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Fig. 6: The Fox controller is a finite state
machine with four states. Each of the four
joints, left hip (LH), left knee (LK), right
hip (RH) and right knee (RK), can per-
form one of three actions: flexion (Flex),
extension (Ext) or holding (Hold). When

a joint' reaf:hes the' maximum extens.ion frames (red dashed) and rotation bounds
or flexion, its state is changed to holding. (blue solid). The hip joint angles’ range
The transition between the states and the  jio¢ between 135° forward and 205° back-

control signals applied during flexion and
extension are determined by the controller
parameters 6.

Fig.7: Hip and knee angle reference

ward. The knee angles range from 185°
when fully extended to 60° when flexed
backward.

3.3 Gait Optimization for a Bio-Inspired Biped

In the following, we consider the case where a reference trajectory is no longer avail-
able. Instead, gait parameters for a bipedal walker are learned directly to maximize
walking speed and robustness. In this section, we introduce the hardware of the bipedal
robot Fox, see Figure ??, used to evaluate Bayesian gait optimization. Moreover, we
present experimental results of the gait optimization and analyze the quality of the
learned gaits.

Hardware and Controller Description To validate our Bayesian gait optimization
approach we used the dynamic bipedal walker Fox, shown in Figure ??. The walker is
mounted on a boom that enforces planar, circular motion. This robot consists of a trunk,
two legs made of rigid segments connected by knee joints to telescopic leg springs,
and two spheric feet with touch sensors [?]. Fox is equipped with low-cost metal-gear
DC motors at both hip and knee joints. Together they drive four actuated degrees of
freedom. Moreover, there are six sensors on the robot: two on the hip joints, two on
the knee joints, and one under each foot. The sensors on the hip and knee joints return
voltage measurements corresponding to angular positions of the leg segments, as shown
in Figure ??. The touch sensors return binary ground contact signals. An additional
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sensor in the boom measures the angular position of the walker, i.e., the position of the
walker on the circle.

The controller of the walker is a finite state machine (FSM), shown in Figure ??,
with four states: two for the swing phases of each leg [?]. These states control the actions
performed by each of the four actuators, which were extension, flexion or holding of
the joint. The transitions between the states are regulated by thresholds based on the
angles of the joints.

For the optimization process, we identified eight parameters of the controller that
are crucial for the resulting gait. These gait parameters consist of four thresholds values
of the FSM (two for each leg) and the four control signals applied during extension and
flexion (separately for knees and hips). It is important to notice that a set of parameters
that proved to be efficient with some motors could be ineffective with a different set of
motors (e.g., if one or more motors are replaced), due to slightly different mechanical
properties. Therefore, automatic and fast gait optimization techniques are essential for
this robot.

Gait Optimization Results We applied Bayesian optimization to find suitable param-
eters for a walking gait of Fox. The objective function f to be minimized was

10)=—5>_Vi(0), (13)

i.e., the negative average walking velocities V; over NV = 3 experiments with the robot
for a given set of gait parameters 8. Minimizing the performance criterion in Equa-
tion (??) maximizes the walking distance in the given time horizon. Moreover, this
criterion does not only guarantee a fast walking gait but also reliability, since the gait
must be robust to noise and the initial configurations across multiple experiments. Each
experiment was initialized from similar initial configurations and lasted 12 seconds
starting from the moment when the foot of the robot initially touched the ground. To ini-
tialize Bayesian optimization, three uniformly randomly sampled parameter sets were
used.

In Figure ??, the Bayesian optimization process for gait learning is shown. Initially,
the learned GP model could not adequately capture the underlying objective function.
Average velocities below 0.1 m/s typically indicate a fall of the robot after the first step.
Large parts of the first 60 experiments were spent to learn that the control signals ap-
plied on the hips had to be sufficiently high in order to swing the leg forward (i.e.,
against gravity and friction). Once this knowledge was acquired, the produced gaits
were typically capable of walking but were rather unstable and fell after few steps. Af-
ter 80 experiments, the model became more accurate (the function evaluations shown
in red lied within the 95% confidence bound of the prediction), and Bayesian optimiza-
tion found a stable walking gait. The resulting gaiﬂ was evaluated for a longer period
of time, and it proved sufficiently robust to walk continuously for 2 minutes without
falling, while achieving an average velocity of 0.45 m/s. This average velocity was close
to the maximum velocity this hardware set-up can achieve [?]. Notably, the parameters

"Videos are available atlhhttp://www.1ias.tu-darmstadt .de/Research/Fox.
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Fig. 8: Average walking speed during the gait optimization process of Fox using
Bayesian optimization. The objective value function (red curve) and the 95% confi-
dence of the model prediction (blue area) are shown during the optimization process.
Three evaluations are used to initialize Bayesian optimization and are not shown in the
plot. After 80 evaluations, Bayesian optimization finds an optimum corresponding to a
stable walking gait with an average speed of 0.45 m/s.

obtained trough Bayesian optimization that correspond to the values of the thresholds
were slightly asymmetrical for the two legs. We explain the superior performance of
asymmetrical parameters by the smaller radius of the walking circle for the inner leg.

From our experience with the biped Fox, hand-tuning the gait parameters can be a
very time-consuming process. Using a (uniform) grid search is infeasible as the number
of required experiments would be N® where 8 is the number of free parameters that
we consider and N is the resolution along each parameter dimension. In the most basic
case, when we evaluate each parameter only at two points, the final number of evalua-
tions would be 28 = 256, which is already twice the number of evaluations Bayesian
optimization needed. Additionally, only a small part of the parameter space leads to
walking gaits, and the influence and the interaction of the parameters is not trivial.
Hence, more than two points for each free parameter would be required. Expert man-
ual parameter search typically yielded inferior gaits compared to the ones obtained by
Bayesian optimization, in both walking velocity and robustness. Additionally, Bayesian
optimization sped up the parameter search from days to hours.

4 Conclusion

Gait optimization for bipedal locomotion is a time-consuming and complex task. Man-
ual gait optimization is an empirical process, which requires extensive experience and
knowledge. Automatic optimization methods circumvent the need for expert knowl-
edge, but they might require a larger number of robot interactions. In a context such
as bipedal locomotion, where interacting with the robot can be time consuming and
cause wear and tear on the robot, experimentally-inefficient optimization methods are
impractical. In this paper, we proposed to use Bayesian optimization to address both
these issues by automatically optimizing gaits in only a small number of interactions
with the robot.
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As a proof of concept, we have shown that Bayesian optimization applied to a
stochastic LQR problem can find near-optimal stationary solutions. Moreover, we have
demonstrated that Bayesian optimization can be successfully applied for trajectory imi-
tation. Given a desired reference trajectory, Bayesian optimization found parameters for
rhythmic motor primitives that accurately reproduced it. Finally, we applied Bayesian
optimization to gait optimization for a real bio-inspired dynamic bipedal walker. Even
in the presence of severe noise, our approach found good gaits fully automatically in
a small number of experiments with the bipedal robot. The resulting performance was
superior to manually designed gaits. From a practical perspective, Bayesian optimiza-
tion allowed us to find good gait parameters in hours, whereas manual parameter search
required days.

In practice, Bayesian optimization has some limitations. First, Bayesian optimiza-
tion is currently limited to optimizing 10-20 parameters. The reason for this limita-
tion is that model building with high-dimensional parameter spaces but only sparse
data is very challenging. Second, the goodness of the optimization strongly depends
on the quality of the learned model. In future, we will explore Bayesian optimization
for higher-dimensional problems and studies of multiple acquisition functions and im-
provements of the expressiveness of the GP model. Moreover, we will develop a contin-
uation of efficient bipedal gait design, such as the evaluation of various gait performance
criteria (especially robustness) and comparisons of learned gaits with human gaits.
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