398 research outputs found

    Fabrication of magnetic atom chips based on FePt

    Full text link
    We describe the design and fabrication of novel all-magnetic atom chips for use in ultracold atom trapping. The considerations leading to the choice of nanocrystalline exchange coupled FePt as best material are discussed. Using stray field calculations, we designed patterns that function as magnetic atom traps. These patterns were realized by spark erosion of FePt foil and e-beam lithography of FePt film. A mirror magneto-optical trap (MMOT) was obtained using the stray field of the foil chip.Comment: 5 pages, 5 figure

    A lattice of microtraps for ultracold atoms based on patterned magnetic films

    Full text link
    We have realized a two dimensional permanent magnetic lattice of Ioffe-Pritchard microtraps for ultracold atoms. The lattice is formed by a single 300 nm magnetized layer of FePt, patterned using optical lithography. Our magnetic lattice consists of more than 15000 tightly confining microtraps with a density of 1250 traps/mm2^2. Simple analytical approximations for the magnetic fields produced by the lattice are used to derive relevant trap parameters. We load ultracold atoms into at least 30 lattice sites at a distance of approximately 10 μ\mum from the film surface. The present result is an important first step towards quantum information processing with neutral atoms in magnetic lattice potentials.Comment: 7 pages, 7 figure

    Nanoscale superconducting gap variations, strong coupling signatures and lack of phase separation in optimally doped BaFe1.86Co0.14As2

    Full text link
    We present tunneling data from optimally-doped, superconducting BaFe1.86Co0.14As2 and its parent compound, BaFe2As2. In the superconductor, clear coherence-like peaks are seen across the whole field of view, and their analysis reveals nanoscale variations in the superconducting gap value, Delta. The average magnitude of 2Delta is ~7.4 kBTC, which exceeds the BCS weak coupling value for either s- or d-wave superconductivity. The characteristic length scales of the deviations from the average gap value, and of an anti-correlation discovered between the gap magnitude and the zero bias conductance, match well with the average separation between the Co dopant ions in the superconducting FeAs planes. The tunneling spectra themselves possess a peak-dip-hump lineshape, suggestive of a coupling of the superconducting electronic system to a well-defined bosonic mode of energy 4.7 kBTC, such as the spin resonance observed recently in inelastic neutron scattering.Comment: 4 figures, corrected typos, reduced size of image

    Creating Ioffe-Pritchard micro-traps from permanent magnetic film with in-plane magnetization

    Full text link
    We present designs for Ioffe-Pritchard type magnetic traps using planar patterns of hard magnetic material. Two samples with different pattern designs were produced by spark erosion of 40 μ\mum thick FePt foil. The pattern on the first sample yields calculated axial and radial trap frequencies of 51 Hz and 6.8 kHz, respectively. For the second sample the calculated frequencies are 34 Hz and 11 kHz. The structures were used successfully as a magneto-optical trap for 87^{87}Rb and loaded as a magnetic trap. A third design, based on lithographically patterned 250 nm thick FePt film on a Si substrate, yields an array of 19 traps with calculated axial and radial trap frequencies of 1.5 kHz and 110 kHz, respectively.Comment: 8 pages, 5 figures Revised and accepted for EPJD, improved picture

    Spin-Resolved Photoemission on Anti-Ferromagnets: Direct Observation of Zhang-Rice Singlets in CuO

    Get PDF
    We demonstrate that it is possible to obtain spin-resolved valence band spectra with a very high degree of spin polarization from antiferromagnetic transition metal materials if the excitation light is circularly polarized and has an energy close to the cation 2p3/2 (L3) white line. We are able to unravel the different spin states in the single-particle excitation spectrum of CuO and show that the top of the valence band is of pure singlet character, which provides strong support for the existence and stability of Zhang-Rice singlets in high-Tc superconductors

    Local Electronic and Magnetic Structure of Ni below and above TC: A Spin-Resolved Circularly Polarized Resonant Photoemission Study

    Get PDF
    We report the measurement of the local Ni 3d spin polarization, not only below but also above the Curie temperature (TC), using the newly developed spin-resolved circularly polarized 2p (L3) resonant photoemission technique. The experiment identifies the presence of 3d8 singlets at high energies and 3d8 triplets at low energies extending all the way to the Fermi energy, both below and above TC, showing that it is the orbital degeneracy of the 3d band and the Hund's rule splitting which is of utmost importance to understand Ni and other 3d ferromagnets
    • …
    corecore