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Abstract 

Electrodischarge machining (EDM) plays a significant role in the precision machining of super alloys and the die/mould 

manufacturing industry and hence warrants the study of its environmental impact and sustainability.  However, process level 

data for unconventional machining practices are limited in the available Life Cycle Inventory (LCI) databases. This paper 

aims to accumulate process level LCI data for EDM and to assess the environmental impact using life cycle analysis. The 

method of assessment takes insights from ISO 14040 and the CO2PE initiative. Data from industrial case studies relating to 

diesinking EDM and wire EDM of steel and aluminium alloys are used. Environmental impact is calculated using the 

resultant LCI data and supplementary data from the Ecoinvent database. The ReCePi endpoint method is used in the impact 

assessment, enabling comparisons among environmental performances. Recommendations for improvements during the 

design phase of machine tools and the operational phase of the machines are given. 
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1 Introduction 

The increasingly stringent regulations on environmental impact which are now in place and the growing 

awareness of resource depletion are the main drivers for the surge of interest in sustainability research in almost 

every field of manufacturing. Optimisation of energy usage and the use of alternative modes of energy have 

gained considerable recent attention. Total world energy consumption by end-use sector including losses during 

2011 was 524 quadrillion Btu, of which 51% was attributed to the industrial sector (USEIA, 2013). Concerning 

emissions, the manufacturing industry is responsible for a major share of environment pollution (Leão and 

Pashby, 2004; Tan et al., 2002). In 2011, greenhouse gas emissions in the European Union manufacturing sector 

amounted to 937 million tonnes of CO2 - equivalents, representing 20% of total emissions for the period 

(Eurostat, 2014), a figure which is 2% higher than the total for household emissions and twice as much as the 

total emissions from transport. The global interest in pollution prevention is motivating manufacturing industries 

to implement environmental friendly strategies (Fratila, 2013). Machining, being one of the most widely used 

manufacturing processes (Munoz and Sheng, 1995), contributes significantly to that pollution figure (Dahmus 

and Gutowski, 2004; Ginting et al., 2015). 

Steel and aluminium are two dominant subsectors among the many contributors to energy use and carbon 

emissions (Gutowski et al., 2013). World crude steel production increased from 595 million tonnes in 1970 to 

1,606 million tonnes in 2013, with a 2010-13 growth rate of 3.9 (World Steel Association, 2014). The growth in 

consumption alongside diminishing resources has led to research into more environmentally benign 

manufacturing, which includes life cycle thinking. Life cycle analyses (LCA) of products have become a 

common practice to assess the environmental footprint of products. Although LCA is popular at system level 

manufacturing, the focus on unit-based manufacturing at process level has been marginal (Gamage and DeSilva, 

2015; Yeo et al., 1998). This is further confirmed by (Duflou et al., 2011), who stated that processes used for 

discrete part manufacturing have poor records in terms of their environmental footprint. As a solution, a 

worldwide consortium of universities and research institutes has developed the CO2PE! initiative (Cooperative 

Effort on Process Emissions in Manufacturing) (Kellens et al., 2011a). CO2PE! is a method designed to 

generate life cycle inventory (LCI) data for manufacturing processes. 
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An extensive collection of LCI data for steel, aluminium and plastics is available in the International Iron and 

Steel Institute (IISI), the European Aluminium Association, and Plastics Europe, respectively. However, this 

data is typically focused on the primary production of the materials into the forms of sheets and foils (Kellens et 

al., 2011a). LCI data on manufacturing process levels has limited availability or is incomplete. The Ecoinvent 

database (Ecoinvent centre, 2015), one of the most widely referenced LCI databases, holds a vast range of LCI 

data. Despite the well-documented material production data, LCI data on manufacturing unit processes still 

leave room for significant improvement. The available data mostly cover conventional processes such as 

turning, milling and casting, whereas non-conventional processes, for example electro discharge machining, 

lack similar records (Duflou et al., 2012). Energy efficiency, which is a key contributor to environmental 

impact, has also been studied for conventional manufacturing unit processes, but data for non-conventional 

machining has scarcely been gathered. The EDM process is at least 1000 times more energy intensive than 

conventional material removal processes because the material removal rate (MRR) is much lower for EDM than 

it is in conventional machining (Li and Kara, 2015).  

This paper assesses the environmental performance of electrodischarge machining (EDM) unit processes. It 

gathers unit process LCI data, taking some insights from ISO 14040 and CO2PE! approaches (Section 2). Four 

case studies using tool steel (AISI P20) and aluminium alloy (3003 H12) are conducted with diesinking and wire 

EDM (see section 2.4). Studies are carried out in an industrial machining centre in consideration of the scale 

benefits of volume of production in terms of resource utilisation and emissions. Further, this paper provides a 

comparison of environmental impact of two metals, steel and aluminium, and highlights the differences in 

analysis of wire EDM and diesinking EDM (see section 3). The paper concludes by drawing attention to key 

contributors with high environmental impacts, and by suggesting further research directions. 

2 Research Approach 

The prior literature on environmental impact assessment and energy efficiency analysis methods were reviewed. 

Based on the methods identified, a pilot study was conducted at the laboratory level using a TOP EDM-spark 

erosion machine. The data collection framework was then developed, drawing insights from ISO 14040 and the 

CO2PE! method. A threefold study of energy, resources and emissions was then undertaken as illustrated in 

Figure 1.  The objective was to capture the data required to estimate the environmental impact of a set period of 

machining.  
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Figure 1: Overview of research approach 

Case studies help to capture industry dynamics and economies of scale more effectively than a laboratory 

experiment in a controlled environment. For example, there are shared air compressors or extractors in 

machining centres while that may not be the case in a laboratory. As most of the LCI data are used to analyse 

and compare industry unit processes with each other, it is more appropriate to use industry data. The 

disadvantage of doing so is the difficulty or inability of controlling the parameters as can be done in a laboratory 

environment.  



2.1 Goal and scope definition 

ISO 14044:2006 LCA requirements and guidelines (International Organisation for Standardisation, 2006) 

requires that the goal and scope of impact assessment are defined. This study aims to ascertain the LCI data of 

process level EDM and to perform a life cycle impact assessment for steel (AISI P20) and aluminium (3003). 

The production and after life treatments of the machines, equipment and consumables’ packaging involved are 

excluded. However, both productive and non-productive but essential (such as setting-up and shutting down 

activities) production parameters are taken into account for impact assessment. Further, a life cycle assessment 

for a unit time of EDM for a given material with a given MRR is produced. 

Then the functional unit for LCA is set. A functional unit is a measure of the function of the system analysed, 

which provides a reference to relate the inputs and outputs to, which will then make it easy to compare them 

with alternative products or processes. Given the nature of this study, setting a functional unit is complex, as the 

researcher has minimal control over operating parameters. However, a reference is defined as one hour of 

machining of a given material under given discharge current or MRR. The objective of the study is more 

focused on how to ascertain the LCI data of a machining process and to identify key contributors to the 

environmental impact. It excludes comparison of two machining methods, such as EDM and milling, to do the 

same machining task to a similar surface finish. Further, it excludes the impact of tool electrode preparation and 

workpiece preparation. 

The EDM process is based on variety of parameters with complex influences on machining performance which 

thus have multifarious environment impacts. These include tool parameters (material, electrode shape, polarity, 

wear ratio, etc.), work parameters (material, melting point, conductivity, thermal properties, etc.), machining 

parameters (discharge current, on/off time, ram frequency, wire feed, etc), dielectric parameters (electrical 

resistivity, viscosity, specific heat capacity), and other parameters (Li and Kara, 2015; Maher et al., 2015). 

However, the methodology for data collection is from industry case studies which will provide access to 

resources and emissions data in industry scale rather than a laboratory scale. Furthermore, most industrial CNC 

EDM machines assign parameters automatically once the programme is selected based on the material and mode 

of cut. Therefore, industry case studies hardly permit control of parameters unless a manual override is 

necessary to get the required work done. As most of the design parameters for EDM are reflected in the MRR, 

the impacts are calculated for the given MRR for a unit time of machining.  

2.2 Time and Energy study 

The energy utilisation during conventional machining is largely dependent on the design parameters, such as, 

part geometry, material type, as well as set-up parameters like the cutting fluid selection (Munoz and Sheng, 

1995). The same applies to unconventional machining and, thus, designing experiments to capture the energy 

data is important. The machine layout with the positioning of sub components, their communications with the 

main control and their interrelations are examined to comprehend energy utilisation. 

The total energy consumption during machining is formulated from energy consuming sub units, for example 

pumps, coolers, servos, discharge generators, etc. Capturing information for each sub unit individually is 

essential for the empirical development of LCI data for the unit time of machining. The total energy 

consumption of the machine tool is monitored using ‘Elcomponent’s SPC®’ current data logger (range: 2-200A, 

accuracy: ± 1% of measurement, sample rate: 1.6 kHz) attached to the main supply points. For capturing the 

energy consumption of sub units, a ‘Fluke®- current clamp’ (range: 0-40A, accuracy: 2% ± 5 digits, resolution: 

0.1 A) was used and the nameplate data of each sub unit were recorded. It is common practice to use 

portable/mobile instruments with metering and logging functions in industry case studies (Kara et al., 2011). A 

time study is required to trace the detailed operation of sub units in order to calculate the energy consumption of 

each phase of machining. 

The time study is designed to use video recording method, which is a widely used method to capture events 

(Maynard and Zandin, 2001) especially with a limited number of observers and in industry set-ups where the 

researchers have less/no control over the flow of operations. This method helps to identify various use modes 



during the full machining duration which makes it possible to account for their respective contribution to the 

total energy consumption, as is evident in many such studies (Devoldere et al., 2008; Duflou et al., 2011). Two 

cameras were used, one still and one mobile. The still camera was set to capture the full machine, including 

operator interactions. This arrangement helps to clearly identify the setup time, machining time, breakdown time 

and any standby times. The mobile camera is used as and when required to get a closer view of the machining 

operation and to record the operation of sub units while the machining continues. 

2.3 Resources and emissions study 

The resource study identifies the types and the amounts of resources consumed for each machining process. 

These include, for example, dielectric, deionising resins, filters, electrode wires, etc. However, accounting for 

direct resource consumption for given session of machining is a challenge as, for example, die electric is 

reused/recirculated and replaced based on the usage and type of machining. Thus, the replacement time period 

would differ from case to case. However, estimation can be made based on the replacement periods suggested 

for the proper maintenance of the machine.  

The liquid and solid emissions or waste can be mapped with input resources and replacement frequencies. 

However, gaseous emissions, which are the most immediate occupational health hazards, are hard to capture. 

Most machine shops are equipped with common ventilation system. Nevertheless, particulate matter density in 

the close proximity of the machine may still rise above the permissible limits. Further, the actual hazardous 

potential is likely to differ based on the type of the metal being machined (Evertz et al., 2006), which makes it 

even more difficult to monitor. Typical emission testing methods for aliphatic compounds are infrared 

spectrometry (IR) and gas chromatography, followed by mass spectroscopy (GC-MS) for chemical analysis.  

Additionally, airborne emissions are tested for polycyclic aromatic hydrocarbons (PAH), any metal compounds 

based on work material are tested using atomic absorption spectrometry (AAS), and BTEX (benzene, toluene, 

ethylbenzene and xylene) compounds are tested using other sophisticated methods (Evertz et al., 2006; 

Sivapirakasam et al., 2011). All these methods require a dedicated enclosure covering the whole machine in 

order to capture the gaseous emissions with inlet and outlet air filters. Consideration in a past study of process 

emissions during EDM based on a working scheme of 2000 hours a year has resulted in almost zero 

environmental impact compared to other contributors (Kellens et al., 2011b). Having considered the significance 

of the impact from gaseous emissions as per previous studies and the practical difficulty of setting up a 

dedicated emission capturing apparatus in an industrial environment, gaseous emissions are excluded from the 

scope of this study. However, the significance of gaseous emissions at various levels of machining currents is 

discussed in the results section.  

2.4 Industry cases 

Observations are made with diesinking EDM (DSEDM) and wire EDM (WEDM) processes with machining 

jobs involving aluminium alloy (3003-H12) and steel (AISI P20) work pieces. A King EDM® CNC EDM NK 

series die sinker machine and a KingSpark® wire cut CNC EDM AL-5 series machine are studied. The 

chemical composition of aluminium alloy 3003 is presented in Table 1.  The alloy has good weldability and 

corrosion resistance. Typical applications includes heat exchangers, evaporators, storage tanks and pipes for 

chemical and food products, cooking utensils, and bakery moulds .The alloy has a thermal conductivity of 190 

W/mK and an electrical resistivity of 0.034×10
-6

 Ωm (Aalco, 2015). Tempering grades and properties for 

various grades of Al material at various thickness levels can be found in the American Society for Testing and 

Materials (ASTM) B209 standard (ASTM Standard B209, 2014).  

Table 1: Chemical composition of Aluminium alloy EN AW-3003 - BS EN 573-3:2013 (British Standards Institution, 2013) 

Element Si Fe Cu Mn Zn Others Al 

Composition (%) 0.6 0.7 0.05-0.20 1.0-1.5 0.10 0.0-0.15 Remainder 

The low carbon steel AISI P20 (ASTM A681) is commonly used for low temperature applications including 

injection moulds and dies for die castings. It is one of the most common material types processed by the centre 



as it is mainly involved in die and mould production. The metal has a density of 7.85 g/cm
3
, and a thermal 

conductivity of 29-34 W/m.K (Matweb, 2015). A typical chemical composition of AISI P20 steel is presented in 

Table 2. 

Table 2: Chemical composition of AISI P20 steel  

Element C Mn Si Cr Mo P S Fe 

Composition (%) 0.28-0.40 0.60-1.00 0.20-0.80 1.40-2.00 0.30-0.55 ≤0.03 ≤0.03 Remainder 

 

The details of machining configurations for each case, I and II, are listed in Table 3. 

Table 3: Machining parameters for DSEDM cases  

Description 
Case I 

DSEDM-Al 

Case II 

DSEDM-Steel 

Work specification Aluminium alloy (3003)  Mould steel  (AISI P20) 

Tool Specification Copper (+) 

Contact area of 34.5 cm2 

Copper (+) 

Contact area of 8.5 cm2 

Peak discharge current (A) 6 6 

Open Voltage (V) 120  120  

Pulse ON time (μs) 175  175 

Pulse OFF time (μs) 40 40 

 

The details of machining parameters for the wire EDM cases (cases III and IV) are presented in Table 4. 

Table 4: Machining parameters for WEDM cases 

Description 
Case III 

WEDM-Al 

Case IV 

WEDM-Steel 

Work specification Aluminium alloy (3003)  

6 mm thick plate 

Mould steel (AISI P20)  

11mm thick plate 

Tool Specification Brass wire  

ø 0.20 mm 

Brass wire  

ø 0.20 mm 

Open voltage 9 8 

Pulse ON time (μs) 5 8 

Pulse OFF time (μs) 14 13 

Wire feed (m/min) 5 5 

Wire tension (g) 6 7 

 

3 Results and discussion 

The results are presented separately for each type of study, with a discussion of their findings. Then the 

environmental impact assessment for each case followed by a sensitivity analysis is presented. 

3.1 Time studies 

The time taken during a machining job can be broadly categorised into productive time and non-productive 

time. Productive time is the time taken for tasks which directly add value to the material removal process. For 

EDM, this is the time taken for the discharging process. Non-productive time is the time taken for tasks which 

add no direct value to the workpiece being machined. These include machine set-up time (programme selection, 

work clamping, tool aligning, tank filling, etc.), standby/waiting time for operator intervention, wire rethreading 

time in the event of breaking, and finishing-up time (work and tool unclamping, cleaning, etc.). The video 

method enables the capture of time values for all these sub-activities. However, for ease of comparison of cases, 



the time figures are categorised as productive and non-productive times and presented in Figure 2. The first two 

columns show diesinking EDM and the latter two columns represents wire EDM. 

 

Figure 2: Time comparison of all four case studies 

The actual machining time depends on job specific parameters including material type, the surface finish 

required and the complexity of the shape. Figure 2 is based on one hour of machining, which means the 

productive time value is an hour in all cases. A one hour basis is taken to ensure the simplicity of LCI 

calculations by apportioning resources and consumables for LCA. 

The time study is not intended to identify any productivity improvement as is done when taking a traditional 

industrial engineering viewpoint, but instead, it is carried out to supplement the energy studies which follow. 

However, it can be seen from Figure 2 that 70% productive time is associated with 30% of non-productive time. 

Productive time or machining time depends on the machining parameters, such as discharge current, on-off 

time, material type, etc., which are hard to improve by process modifications. On the other hand, non-productive 

time can be improved with soft parameters, like operator training and more organised manufacturing 

management practices such as lean manufacturing. However, the improvement potential and its impact on 

sustainable machining are yet to be researched. Higher non-productive time is sometimes caused by unexpected 

events during machining, such as wire breakages during WEDM. To elaborate the excess time and 

comprehensive time study results, Figure 3 is presented for the instance of the Al wire cut. 

 

Figure 3 : Detailed time study results of Al wire EDM case 
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Wire breakage and rethreading (automatic) time therefore accounted for 4% of the total job time. These 

additional factors add excess energy and resource consumption. However, the effect of wire failure is excluded 

for subsequent calculations of specific energy and material removal rate. The discharge qualities of Al are lower 

than those of steel, therefore there is a higher tendency for wire failures in Al wire cutting than in steel wire 

cutting. Figure 3 shows how the 38% of non-productive time is distributed during the Al wire cut case. Detailed 

time studies of other cases are not presented, as those are used and reflected in the energy study results which 

follow. 

3.2 Energy study 

The objective of the energy study is to find the electrical energy consumption per hour of machining for a given 

material removal rate. Figure 4 shows the specific energy consumption for each case study and the respective 

MRR in the secondary axis. The MRR for a given material is dependent on variety of parameters including 

discharge current and pulse on-off time. The MRR is calculated fully empirically using time study data and the 

dimension of the cut. Typical MRR rates range from about 0.1 to 10 mm
3
min

-1
A

-1
 (McGeough, 1988). However, 

for predictive calculations of MRR, a few theoretical methods are available. These include assessing the waste 

streams of EDM to calculate MRR by considering the melting point of the workpiece material (Yeo et al., 

1998), a semi–empirical method (Wang and Tsai, 2001) and a dimensional analysis method (Yahya and 

Manning, 2004).  

 

Figure 4: Resultant MRR values and specific energy values for each case 

The specific energy consumptions (SEC) are calculated using the total electrical energy consumption for an hour 

of machining including non-productive energy consumption (Please note that in WEDM-Al case the non-

productive energy caused by wire failure is excluded to allow fair comparison). Both specific energy and MRR 

values are comparatively in line with the range/degrees of values presented in a prior study (Gutowski et al., 

2006). The first two cases, DSEDM-Al and DSEDM-Steel, and the last two cases, WEDM-Al and WEDM-

Steel, are discussed pairwise for ease of comparison. In the first case, DSEDM-AL, the high recorded rate of 

23.4 mm
3
/min can be explained by the large contact area of the electrode and the material type (aluminium). 

This caused the lower specific energy value of 3.7 kJ/mm
3
. In the second case, DSEDM-Steel, the specific 

energy rose to over seven times more (27.6 kJ/mm
3
) than the previous case and the MRR had a much lower 

value, of 4.0 mm
3
/min, compared to aluminium case. A more detailed comparison is difficult as the researcher 

had minimal control over the machining configurations in the industrial setup used as this study’s context. In the 

third case, WEDM-Al, the SEC value reached its highest level, of 76.6 kJ/mm
3
 and the MRR shows a 7.6 

mm
3
/min value which shows a slower machining rate than that of the WEDM-Steel case. 
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This may be due to the higher non-productive energy associated with starting up and shutting down activities. In 

the last case, WEDM-steel, a slightly higher MRR of 11.8 mm
3
/min and a lower SEC value of 48.4 kJ/mm

3 
was 

recorded in comparison to the aluminium case. In general it is expected that aluminium should be easier to cut 

than steel, though these results show otherwise due to process uncertainties like wire failure due to poor 

discharge. 

Energy study of Die-sinking EDM with Al and Steel – Cases I and II  

The total energy consumption during machining of aluminium alloy and tool steel (P20) are presented in Figure 

5. Both studies involved discharge current of 6A and single cutting mode (rough cut). The tooled steel was for a 

plastic mould of a fast-moving consumer product. 

 

Figure 5: Energy consumption during one hour of DSEDM1  

The total energy consumption is seen to be greater for steel machining than for aluminium, with a productive 

mode difference of 0.54 kWh. Non-productive mode consumption is almost half for steel compared to Al, which 

could be due to the more efficient set up process. For LCI purposes this graph is formulated for one hour of 

machining and includes the non-productive activities which are essential to perform that one hour of machining. 

The non-productive activities are encapsulated for the machining task as they fall within the scope of unit 

process LCI. 

Energy study of Wire EDM with Al and Steel – Cases III and IV  

As for the DSEDM cases, Figure 6 compares the energy consumption levels during the Wire EDM of Al and 

Steel calculated for one hour of machining.   

                                                           
1
 Please note the contact areas were different for each case. 
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Figure 6 : Energy consumption during one hour of WEDM 

Although they could be improved in terms of efficiency, non-productive activities are essential in order for the 

productive/machining mode to take place. Hence, it is accounted for LCI of one hour of machining. The 

material removal rates (MRR) for aluminium and steel during WEDM are 7.6 mm
3
/min and 11.8 mm

3
/min 

(Figure 4) respectively for a single mode of cut. It can be seen from Figure 6 that the total energy consumption 

is slightly higher for aluminium cutting than it is for steel. However, the energy consumption during 

productive/machining mode is lower for aluminium than for steel by 1.44 kWh. Further, energy consumption in 

the non-productive mode is almost half of the energy consumption in productive mode for aluminium, whereas 

it is only a fourth of the consumption in the productive mode for steel. It is observed that several wire breakages 

occurred during aluminium cutting which will make the non-productive energy consumption even higher, 

whereas no wire failures occurred while machining steel. This can be explained with reference to the favourable 

discharge qualities of steel than aluminium. A detailed study on how wire failure affects the process energy is 

presented in (Gamage and DeSilva, (2016) and a detailed energy study showing how different sub units 

contribute during each stage of machining  in presented in (Gamage et al., (2016). 

3.3 Resources study 

This section summarises the resources required for each machining case. As most of the resources are reused, 

they are apportioned considering the total life years of each particular resource. For example, dielectric fluid is 

replaced every five years. The total dielectric volume is therefore apportioned into the total working hours for 

five years to calculate the exact consumption per hour. An identified list of resources for each case are 

apportioned to an hour of machining as appropriate and the results are summarised in Table 5. 

Table 5: Summary of resource consumption for EDM 

Resource type 
Case I 

DSEDM-Al 

Case II 

DSEDM-Steel 

Case III 

WEDM-Al 

Case III 

WEDM-Steel 

Dielectric Hydrocarbon oil (Esso 

lector TM 35) 

Flush rate of 0.545 m3/hr  

Replaced every 5 years 

Hydrocarbon oil (Esso 

lector TM 35) 

Flush rate of 0.545 m3/hr  

Replaced every 5 years 

Deionised water 

1.51×10-3 m3/hr approx. 

Replaced every year 

Deionised water 

1.51×10-3 m3/hr approx. 

Replaced every year 

Lubricant Hydrocarbon (Mobil 

Vectra TM ) - 43 ml/hr 

Hydrocarbon (Mobil 

Vectra TM ) - 43 ml/hr 

Hydrocarbon (Mobil 

Vectra TM ) - 43 ml/hr 

Hydrocarbon (Mobil 

Vectra TM ) - 43 ml/hr 

Deionising resins 

(Polystyrene  beads) 
N/A N/A 

10 kg replaced twice a 

year 

10 kg replaced twice a 

year 

Dielectric filters Cartridge type oil filter  

(ø15cm×45cm long) 

Cartridge type oil filter 

(ø15cm×45cm long) 

Flush type water filters 

Replaced after 1.5 

Flush type water filters 

Replaced after 1.5 

5.98 (62%) 
7.42 (78%) 

3.7 (38%) 
2.11 (22%) 
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2 units – replaced twice a 

year 

2 units – replaced twice a 

year 

kg/cm2 pressure 

threshold is reached 

(approx. One year) 

kg/cm2 pressure 

threshold is reached 

(approx. One year) 

Cotton waste for 

cleaning 

Approx. 6.25 g each  

time 

Approx. 6.25 g each  

time 

Approx. 6.25 g each  

time 

Approx. 6.25 g each  

time 

 

3.4 Emissions study 

Materials which are emitted out of the system boundary and are not accounted for elsewhere for LCI are 

considered here. Emissions usually refer to gaseous or aerosols emissions. However, solid and liquid emissions 

are also considered here as emissions for LCI (see Table 6). During EDM, workpiece is gradually eroded with 

successive discharges. These small particles are flushed away with the dielectric and finally filtered out in 

filters. Similarly, the tool is also slightly eroded by sparks. The lost tool material (copper) is calculated using the 

tool wear ratio of 0.45% indicated in the technical data manual for a given material and discharge current. These 

filtered matters are returned to the ecosphere once dielectric filters are replaced. Therefore, both lost workpiece 

and tool material have to be accounted for in LCI calculations and these are summarised in Table 6. 

Table 6: Summary of emissions values for one hour of EDM 

Emission type 
Case I 
DSEDM-Al 

Case II 

DSEDM-Steel 
Case III 

WEDM-Al 

Case III 

WEDM-Steel 

Workpiece material lost  Aluminium alloy  (3003) 
1,400.95 mm3(3.82 g) 

  

Tool steel (P20/ASTM 
A681) 

242.22 mm3 (1.90 g) 

Aluminium alloy  (3003) 
454.8 mm3(1.24 g) 

 

Tool steel (P20/ASTM 
A681) 

709 mm3 (5.57g) 

Tool material lost Copper 
11.77 mm3  

Copper 
1.15 mm3 

Used up brass wire  
(ø 0.2 mm) – 111.12 g 

Used up brass wire  
(ø 0.2 mm) – 95.96 g 

Gaseous emissions 

Aliphatic, BTEX, PAH 

Excluded Excluded Excluded  Excluded 

 

Unless enclosed by a dedicated emission capturing arrangement, the measurement of gaseous emissions is 

particularly hard. Additionally, in most industry setups, EDM machines share the same space as other machines 

with a common exhaust system. The discharge current is one of the main factors deciding MRR, and 

temperature levels near the processing zone can lead to higher emission rates. On the other hand, maintaining a 

certain level of dielectric over the processing point helps to dissolve, precipitate or condense emissions in 

dielectric before emitting them into the surrounding atmosphere. The recommended value provided by the 

German occupational protection agency is 40mm above the emission source (Pfeiffer et al., 1995). Emissions 

during EDM which have a strong influence from the tool and workpiece include aliphatic compounds and 

metals. In contrast, volatile organic compounds (VOCs, mainly BTEX compounds) and polycyclic aromatic 

hydrocarbons (PAH) have no strong relationship with the tool or workpiece properties (Evertz et al., 2006). 

Therefore, VOCs and PAHs emissions during EDM can reasonably be used to predict emissions during EDM 

using petroleum based dielectrics. However, in order to generate considerable emissions, a study by Evertz et 

al., (2006), used high discharge currents like 32A, 64A, 128A and 192A, and a workpiece containing Ni and Cr. 

All four case studies in this research are conducted under a 10A discharge current and using different materials, 

and it is not therefore logical to use these emission figures for the impact assessment. 

3.5 Environmental impact assessment  

The data gathered from one hour of machining in each case are then used in an environmental performance 

analysis. The assessment refers to the Ecoinvent version 3.1 LCI database for assessment and uses the 

SimaPro® 8 software tool. A variety of methods can be used for impact assessment, such as Eco-indicator 99, 

CML 2001, EDIP 97 (Dreyer et al., 2003), and Impact 2002+ (Jolliet et al., 2003), and they are selected based 

on the approach, mid-point or end-point of the environmental mechanism. The assessment method used here is 

ReCiPe 2008, which takes into account both the midpoint and endpoint measures of the environmental 

mechanism, which has the advantage of expressing the impact using a single score (Goedkoop et al., 2013).  



Impact of Diesinking EDM - cases I & II 

Figure 7 shows the environmental performance of one hour of EDM at a discharge current of 6A (MRR 23.4 

mm
3
/min) with a copper tool and an aluminium work for the first case. 

 

Figure 7: Environmental impact of one hour of DSEDM of Al work and Cu tool – Method: ReCiPe Endpoint (H) V1.11 / 

Europe ReCiPe H/A / Single score 

It is evident that the main contributors are the electrical energy (57%) and the hydrocarbon oil (27%) used as 

dielectric. The total impact in absolute terms amounts to 183.9 mPt (milli-points).  The ‘Point or person- 

equivalents’ used in presenting the normalised endpoint score represents the thousandth of the annual 

environmental load of an average European inhabitant and is expressed in units of one thousandth to better 

represent smaller values (Dreyer et al., 2003; Goedkoop and Spriensma, 2001). The work material lost (1.9%) 

and the tool material lost (0.2%) are the lowest impact categories. However, the impact of the dielectric filters is 

ignored here as the material composition is not known and could vary by machine type.  

Figure 8 shows the environmental performance of one hour of diesinking EDM of P20 tool steel machined with 

a copper tool. The MRR is 4.04 mm
3
/min with a discharge current of 6A, which is the same as the DSEDM-Al 

case. Despite the same discharge current, significantly different MRR values can be seen, which may be due to 

the other operating parameters and properties of Al and Cu.  

 

Figure 8: Environmental impact of one hour of DSEDM of Steel work and Cu tool – Method: ReCiPe Endpoint (H) V1.11 / 

Europe ReCiPe H/A / Single score 

The absolute impact figure is 185.3 mPt, which is slightly higher than that for aluminium. Once apportioned to 

the one hour time scale, some resources, such as dielectric and lubricant consumption, are similar irrespective of 

the work and tool parameters. However, the impact figures for electrical energy, work and tool materials depend 

on the discharge current, productive/unproductive time, type of tool/workpiece material and other unknown 

parameters. From both cases it can be concluded that almost 60% of the impact is due to the electrical energy 
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and 30% is due to the dielectric hydrocarbon. The remaining 10% of the impact is caused by the cleaning 

materials, lubrication, and the work and tool materials. 

Impact of Wire EDM - Cases III & IV 

The key difference in terms of resource consumption in WEDM is the use of deionised water as the dielectric in 

contrast to the use of hydrocarbon oil in DSEDM. The latter has a significant impact compared to water in terms 

of the endpoint impact category of resource depletion. Further, the tool material used in WEDM, brass wire, is 

completely discarded whereas in DSEDM only the eroded volume of tool material is used for impact calculation 

as the remaining tool material can either be reused or recycled. The MRR for WEDM-Al is 7.6 mm
3
/min and for 

WEDM-Steel it is 11.8 mm
3
/min with the same diameter (0.2 mm) of brass wire. Favourable discharge 

parameters such as the electrical conductivity of steel allow for higher material removal rates than aluminium 

under similar machining conditions.  Figure 9 shows the impact assessment results for one hour of wire EDM of 

aluminium. 

 

Figure 9: Environmental impact of one hour of WEDM of aluminium with brass wire – Method: ReCiPe Endpoint (H) 

V1.11 / Europe ReCiPe H/A / Single score 

The main similarity shared by both machining types is that the main impact source is electrical energy. 

Dielectric fluid, on the other hand, is the second highest impact source in DSEDM but the lowest impact source 

in WEDM, as deionised water causes almost zero impact compared to hydrocarbon oil. Interestingly, the tool 

material (brass) is the second highest impact source for WEDM, whereas for DSEDM, tool material (copper) is 

the lowest impact source (see Figure 9 and Figure 10). 

 

Figure 10: Environmental impact of one hour of WEDM of P20 steel with brass wire – Method: ReCiPe Endpoint (H) V1.11 

/ Europe ReCiPe H/A / Single score 

The total absolute impact value for WEDM-Al case is 1,066 mPt, and 1,208 mPt for WEDM-Steel. The main 

observation to be made in relation to WEDM cases is that about 98% of the environmental impact has been 

caused by electrical energy and the wire material, with electrical energy contributing over 50% of the impact.  
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3.6 Sensitivity analysis  

It is worthwhile to find out which of the input sources influence the final outcome most, and how significant 

they are when compared to each other. Measurement limitations, the capabilities of the equipment and the 

methods used may all affect the absolute LCI values. A sensitivity analysis is therefore carried out to improve 

the confidence of the results obtained. It will further help to moderate the case-specific parameters in order to 

build a more generalised idea of EDM process level impacts. Thus, the sensitivity analysis is carried out by 

altering significant parameters to discover the changes in total environmental impact figures. As per Figure 7 

and Figure 8, for DSEDM, electrical energy and dielectric are the most significant impact sources and both are 

functions of time. Hence, changing electrical energy and dielectric imply a change in machining time as well. 

Therefore, the influence on total environmental impact from electrical energy and dielectric are used for the 

diesinking cases. 

 

Figure 11: Sensitivity of electrical energy and dielectric on total impact during diesinking EDM 

Input parameters are changed in 10% steps both ways and the corresponding impact values under ReCiPe 

Endpoint (H) V1.11 / Europe ReCiPe H/A / single score method are plotted as shown in Figure 11. The 

alterations were made while keeping the other parameters constant as the interdependencies among parameters 

are not known.  It can be seen from the graph that both parameters, energy and dielectric, have a strong positive 

correlation to the total environmental impact. Electrical energy seems more sensitive to the total impact as the 

gradients are higher than the gradients of dielectric lines. Further, case specific or material specific variation 

cannot be seen from the graph.  

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

-30% -20% -10% 0% 10% 20% 30%

%
 V

ar
ia

ti
o

n
 i

n
 t

o
ta

l 
im

p
ac

t 

% change in input parameter 

DSEDM-Al - Elec. Energy DSEDM- Steel - Elec. Energy

DSEDM-Al - Dielectric DSEDM-Steel - Dielectric



 

Figure 12. Sensitivity of electrical energy and wire material on total impact during wire EDM 

In the WEDM process (cases III and IV), the second most influential input parameter is the wire material 

(brass), unlike dielectric in DSEDM. The most sensitive parameter is again electrical energy, with almost twice 

the influence of wire material in the WEDM-Steel case. A direct proportionality can be seen in the total impact 

value and input variables in the graphs in both Figure 11 and Figure 12. The electrical energy consumption of 

WEDM-Steel case is more sensitive to the total environmental impact (with a gradient of 0.064) than that of 

WEDM-Al case (slightly lower slope of 0.054). All four parameters have a strong positive correlation with a R
2
 

value of 0.999. In both WEDM and DSEDM cases, the electrical energy during steel machining is more 

sensitive to the impact figure than machining of aluminium.  

4 Conclusions 

Four case studies of DSEDM and WEDM, with aluminium alloy 3003 and tool steel AISI P20, have been 

investigated in this study. The unit process LCI data of unconventional machining have been ascertained 

through time, energy, resources and emissions studies for each case. Despite some limitations relating to 

acquiring airborne emissions data, all other input and output reference flows were traced and analysed. It is 

shown that a considerable amount of energy consumption occurs during the non-productive stages of machining 

which is responsible for extended environmental impacts. The results show that the main source of impact is 

electrical energy in all four cases, which is responsible for approximately 60% of the total impact in each case. 

However, the second highest impact source is dielectric oil (hydrocarbon) for DSEDM whereas for WEDM, it is 

the wire material (brass). This reflects the significance of the ‘Resource availability’ in comparison to other 

endpoint categories, Damages to human health and Ecosystem diversity. 

In view of the Pareto approach, the most significant impact source, which is electrical energy, can be controlled 

through appropriate machine tool design and also by using sensible operating procedures. A typical EDM 

machine is automated to a great extent, and is programmed to operate each sub unit based on manufacturer 

specific algorithms. All the energy consuming sub units, such as pumps and chillers, have room for optimisation 

for better energy performance apart from the focus quality of cut.  

The introduction of alternative types of dielectric media with lower impact to replace hydrocarbon oil would 

represent another dimension of research. Operational level improvements can also be suggested to keep energy 

and resource consumption to a minimum level. As can be seen from the present results, keeping machines in 

standby mode uses a considerable amount of energy. This is mainly due to chillers and pumps triggering to keep 

the dielectric at a set temperature. Improved production planning and awareness are required to better utilise the 
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machines in productive mode otherwise, an OFF mode could mean higher savings potential in energy 

consumption and, thus, could reduce environmental impact. 

Further research on process level environmental impact assessment of EDM with difference parameters is 

underway. An increasing concern regarding subtractive processes is the fact that only a small fraction of 

purchased material ends up in the final product, the rest being wasted during machining. Manufacturers cannot 

afford to lose a considerable amount of material during machining, and the waste of material also has an adverse 

impact on their environmental footprint. As EDM is being used for machining high cost Titanium and Nickel 

based super alloys, this study can be further developed as a cost analogue for such industries. Another area of 

possible research would be investigation of the possible re-use of the otherwise wasted material using low 

energy intensive processes. 
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