426 research outputs found

    Hunting for origins of migraine pain: cluster analysis of spontaneous and capsaicin-induced firing in meningeal trigeminal nerve fibers

    Get PDF
    International audienceTrigeminal nerves in meninges are implicated in generation of nociceptive firing underlying migraine pain. However, the neurochemical mechanisms of nociceptive firing in meningeal trigeminal nerves are little understood. In this study, using suction electrode recordings from peripheral branches of the trigeminal nerve in isolated rat meninges, we analyzed spontaneous and capsaicin-induced orthodromic spiking activity. In control, biphasic single spikes with variable amplitude and shapes were observed. Application of the transient receptor potential vanilloid 1 (TRPV1) agonist capsaicin to meninges dramatically increased firing whereas the amplitudes and shapes of spikes remained essentially unchanged. This effect was antagonized by the specific TRPV1 antagonist capsazepine. Using the clustering approach, several groups of uniform spikes (clusters) were identified. The clustering approach combined with capsaicin application allowed us to detect and to distinguish "responder" (65%) from "non responder" clusters (35%). Notably, responders fired spikes at frequencies exceeding 10 Hz, high enough to provide postsynaptic temporal summation of excitation at brainstem and spinal cord level. Almost all spikes were suppressed by tetrodotoxin (TTX) suggesting an involvement of the I I X-sensitive sodium channels in nociceptive signaling at the peripheral branches of trigeminal neurons. Our analysis also identified transient (desensitizing) and long-lasting (slowly desensitizing) responses to the continuous application of capsaicin. Thus, the persistent activation of nociceptors in capsaicin-sensitive nerve fibers shown here may be involved in trigeminal pain signaling and plasticity along with the release of migraine-related neuropeptides from TRPV1 positive neurons. Furthermore, cluster analysis could be widely used to characterize the temporal and neurochemical profiles of other pain transducers likely implicated in migraine

    The involvement of P2Y12 receptors, NADPH oxidase, and lipid rafts in the action of extracellular ATP on synaptic transmission at the frog neuromuscular junction

    Get PDF
    © 2014 IBRO. Adenosine 5'-triphosphate (ATP) is the main co-transmitter accompanying the release of acetylcholine from motor nerve terminals. Previously, we revealed the direct inhibitory action of extracellular ATP on transmitter release via redox-dependent mechanism. However, the receptor mechanism of ATP action and ATP-induced sources of reactive oxygen sources (ROS) remained not fully understood. In the current study, using microelectrode recordings of synaptic currents from the frog neuromuscular junction, we analyzed the receptor subtype involved in synaptic action of ATP, receptor coupling to NADPH oxidase and potential location of ATP receptors within the lipid rafts. Using subtype-specific antagonists, we found that the P2Y13 blocker 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde did not prevent the depressant action of ATP. In contrast, the P2Y12 antagonist 2-methylthioadenosine 5'-monophosphate abolished the inhibitory action of ATP, suggesting the key role of P2Y12 receptors in ATP action. As the action of ATP is redox-dependent, we also tested potential involvement of the NADPH oxidase, known as a common inducer of ROS. The depressant action of extracellular ATP was significantly reduced by diphenyleneiodonium chloride and 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, two structurally different inhibitors of NADPH oxidase, indicating that this enzyme indeed mediates the action of ATP. Since the location and activity of various receptors are often associated with lipid rafts, we next tested whether ATP-driven inhibition depends on lipid rafts. We found that the disruption of lipid rafts with methyl-beta-cyclodextrin reduced and largely delayed the action of ATP. Taken together, these data revealed key steps in the purinergic control of synaptic transmission via P2Y12 receptors associated with lipid rafts, and identified NADPH oxidase as the main source of ATP-induced inhibitory ROS at the neuromuscular junction. Our data suggest that the location of P2Y receptors in lipid rafts speeds up the modulatory effect of ATP. Uncovered mechanisms may contribute to motor dysfunctions and neuromuscular diseases associated with oxidative stress

    Endogenous cholinergic inputs and local circuit mechanisms govern the phasic mesolimbic dopamine response to nicotine

    Get PDF
    Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4β2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement.Peer reviewe

    Modeling of the two wave response of ATP receptors to jumps of the agonist concentration in pheochromocytoma cells | Modelirovanie dvukh voln otveta ATP-retseptorov kletok feokhromotsitomy na skachok kontsentratsii agonista.

    Get PDF
    A model for the kinetics of conformational transitions of ionotropic ATP receptors in pheochromocytoma cells was elaborated. The contribution of the states of ionotropic receptors (upon the blockage of the "open" channel state) to the kinetics of postsynaptic currents was estimated at mediator concentrations studied. The model enables one to determine the contribution of various conformational states of the receptor, in particular in the "closed" state, to the dynamics of ionic current that is registered upon stimulation of ATP receptors. It is shown that after the cessation of the agonist application, a secondary current wave can arise. The rate constants for conformational transitions of ATP receptors were determined

    Hydrogen Sulfide Ameliorates Developmental Impairments of Rat Offspring with Prenatal Hyperhomocysteinemia

    Get PDF
    Maternal high levels of the redox active amino acid homocysteine-called hyperhomocysteinemia (hHCY)-can affect the health state of the progeny. The effects of hydrogen sulfide (H2S) treatment on rats with maternal hHCY remain unknown. In the present study, we characterized the physical development, reflex ontogeny, locomotion and exploratory activity, muscle strength, motor coordination, and brain redox state of pups with maternal hHCY and tested potential beneficial action of the H2S donor-sodium hydrosulfide (NaHS)-on these parameters. Our results indicate a significant decrease in litter size and body weight of pups from dams fed with methionine-rich diet. In hHCY pups, a delay in the formation of sensory-motor reflexes was observed. Locomotor activity tested in the open field by head rearings, crossed squares, and rearings of hHCY pups at all studied ages (P8, P16, and P26) was diminished. Exploratory activity was decreased, and emotionality was higher in rats with hHCY. Prenatal hHCY resulted in reduced muscle strength and motor coordination assessed by the paw grip endurance test and rotarod test. Remarkably, administration of NaHS to pregnant rats with hHCY prevented the observed deleterious effects of high homocysteine on fetus development. In rats with prenatal hHCY, the endogenous generation of H2S brain tissues was lower compared to control and NaHS administration restored the H2S level to control values. Moreover, using redox signaling assays, we found an increased level of malondialdehyde (MDA), the end product of lipid peroxidation, and decreased activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the brain tissues of rats of the hHCY group. Notably, NaHS treatment restored the level of MDA and the activity of SOD and GPx. Our data suggest that H2S has neuroprotective/antioxidant effects against homocysteine-induced neurotoxicity providing a potential strategy for the prevention of developmental impairments in newborns

    Membrane current series monitoring: Essential reduction of data points to finite number of stable parameters

    Get PDF
    © 2014 Nigmatullin, Giniatullin and Skorinkin. In traditional studies of changes in cell membrane potential or trans-membrane currents a large part of the recorded data presents "a pure noise." This noise results mainly from the random openings of membrane ionic channels. Different types of stationary or non-stationary noise analysis have been used in electrophysiological experiments for identification of channels kinetic states. But these methods have a limited power and often cannot answer to the main question of the experimental study: do external factors induce a significant change of channels kinetics? A new method suggested in the current study is based on the scaling properties of the beta-distribution function that allows reducing the series containing 200,000 and more data points to analysis of only 10-20 stable parameters. The following clusterization using the generalized Pearson correlation function allows taking into account the influence of an external factor and combine/separate different parameters of interest into a statistical cluster considering the influential parameter. This method which we call BRC (Beta distribution-Reduction-Clusterization) opens new possibilities in creation of a largely reduced database while extracting specific fingerprints of the long-term series. The BRC method was validated using patch clamp current recordings containing 250,000 data points obtained from the living cells and from open tip electrode. The numerical distinction between these two series in terms of the reduced parameters was obtained

    Bimodal action of protons on ATP currents of rat PC12 cells

    Get PDF
    The mode of action of extracellular protons on ATP-gated P2X2 receptors remains controversial as either enhancement or depression of ATP-mediated currents has been reported. By investigating, at different pH, the electrophysiological effect of ATP on P2X2 receptors and complementing it with receptor modelling, the present study suggests a unified mechanism for both potentiation and inactivation of ATP receptors by protons. Our experiments on patch-clamped PC12 cells showed that, on the same cell, mild acidification potentiated currents induced by low ATP concentrations (1 mM) with emergence of current fading and rebound. To clarify the nature of the ATP/H+ interaction, we used the Ding and Sachs's "loop" receptor model which best describes the behavior of such receptors with two open states linked via one inactivated state. No effects by protons could be ascribed to H+-mediated open channel block. However, by assuming that protons facilitated binding of ATP to resting as well as open receptors, the model could closely replicate H+-induced potentiation of currents evoked by low ATP doses plus fading and rebound induced by high ATP doses. The latter phenomenon was due to receptor transition to the inactive state. The present data suggest that the high concentration of protons released with ATP (and catecholamines) from secretory vesicles may allow a dual action of H+ on P2X2 receptors. This condition might also occur on P2X2 receptors of central neurons exposed to low pH during ischemia

    Transcriptomic and Epigenetic Regulation of Disuse Atrophy and the Return to Activity in Skeletal Muscle

    Get PDF
    Physical inactivity and disuse are major contributors to age-related muscle loss. Denervation of skeletal muscle has been previously used as a model with which to investigate muscle atrophy following disuse. Although gene regulatory networks that control skeletal muscle atrophy after denervation have been established, the transcriptome in response to the recovery of muscle after disuse and the associated epigenetic mechanisms that may function to modulate gene expression during skeletal muscle atrophy or recovery have yet to be investigated. We report that silencing the tibialis anterior muscle in rats with tetrodotoxin (TTX)—administered to the common peroneal nerve—resulted in reductions in muscle mass of 7, 29, and 51% with corresponding reductions in muscle fiber cross-sectional area of 18, 42, and 69% after 3, 7, and 14 d of TTX, respectively. Of importance, 7 d of recovery, during which rodents resumed habitual physical activity, restored muscle mass from a reduction of 51% after 14 d TTX to a reduction of only 24% compared with sham control. Returning muscle mass to levels observed at 7 d TTX administration (29% reduction). Transcriptome-wide analysis demonstrated that 3714 genes were differentially expressed across all conditions at a significance of P ≤ 0.001 after disuse-induced atrophy. Of interest, after 7 d of recovery, the expression of genes that were most changed during TTX had returned to that of the sham control. The 20 most differentially expressed genes after microarray analysis were identified across all conditions and were cross-referenced with the most frequently occurring differentially expressed genes between conditions. This gene subset included myogenin (MyoG), Hdac4, Ampd3, Trim63 (MuRF1), and acetylcholine receptor subunit α1 (Chrna1). Transcript expression of these genes and Fboxo32 (MAFbx), because of its previously identified role in disuse atrophy together with Trim63 (MuRF1), were confirmed by real-time quantitative RT-PCR, and DNA methylation of their promoter regions was analyzed by PCR and pyrosequencing. MyoG, Trim63 (MuRF1), Fbxo32 (MAFbx), and Chrna1 demonstrated significantly decreased DNA methylation at key time points after disuse-induced atrophy that corresponded with significantly increased gene expression. Of importance, after TTX cessation and 7 d of recovery, there was a marked increase in the DNA methylation profiles of Trim63 (MuRF1) and Chrna1 back to control levels. This also corresponded with the return of gene expression in the recovery group back to baseline expression observed in sham-operated controls. To our knowledge, this is the first study to demonstrate that skeletal muscle atrophy in response to disuse is accompanied by dynamic epigenetic modifications that are associated with alterations in gene expression, and that these epigenetic modifications and gene expression profiles are reversible after skeletal muscle returns to normal activity

    Emerging role of (endo)cannabinoids in migraine

    Get PDF
    © 2018 Leimuranta, Khiroug and Giniatullin. In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain. Individual sections of this review cover key aspects of this topic, such as: (i) the current knowledge on the endocannabinoid system (ECS) with emphasis on expression of its components in migraine related structures; (ii) distinguishing peripheral from central site of action of cannabinoids, (iii) proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv) therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v) dual (possibly opposing) actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors. We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD) hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD) underlying the migraine aura. Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components) or novel endocannabinoid therapeutics in migraine treatment
    corecore