403 research outputs found

    Online Search Tool for Graphical Patterns in Electronic Band Structures

    Get PDF
    We present an online graphical pattern search tool for electronic band structure data contained within the Organic Materials Database (OMDB) available at https://omdb.diracmaterials.org/search/pattern. The tool is capable of finding user-specified graphical patterns in the collection of thousands of band structures from high-throughput ab initio calculations in the online regime. Using this tool, it only takes a few seconds to find an arbitrary graphical pattern within the ten electronic bands near the Fermi level for 26,739 organic crystals. The tool can be used to find realizations of functional materials characterized by a specific pattern in their electronic structure, for example, Dirac materials, characterized by a linear crossing of bands; topological insulators, characterized by a "Mexican hat" pattern or an effectively free electron gas, characterized by a parabolic dispersion. The source code of the developed tool is freely available at https://github.com/OrganicMaterialsDatabase/EBS-search and can be transferred to any other electronic band structure database. The approach allows for an automatic online analysis of a large collection of band structures where the amount of data makes its manual inspection impracticable.Comment: 8 pages, 8 figure

    Abrupt transition in quasiparticle dynamics at optimal doping in a cuprate superconductor system

    Full text link
    We report time-resolved measurements of the photoinduced change in reflectivity, Delta R, in the Bi2Sr2Ca(1-y)Dy(y)Cu2O(8+delta) (BSCCO) system of cuprate superconductors as a function of hole concentration. We find that the kinetics of quasiparticle decay and the sign of Delta R both change abruptly where the superconducting transition temperature Tc is maximal. These coincident changes suggest that a sharp transition in quasiparticle dynamics takes place precisely at optimal doping in the BSCCO system.Comment: 10 pages, 4 figure

    Ultrafast dynamics in the presence of antiferromagnetic correlations in electron-doped cuprate La2x_{2-x}Cex_xCuO4±δ_{4\pm\delta}

    Get PDF
    We used femtosecond optical pump-probe spectroscopy to study the photoinduced change in reflectivity of thin films of the electron-doped cuprate La2x_{2-x}Cex_xCuO4_4 (LCCO) with dopings of x==0.08 (underdoped) and x==0.11 (optimally doped). Above Tc_c, we observe fluence-dependent relaxation rates which onset at a similar temperature that transport measurements first see signatures of antiferromagnetic correlations. Upon suppressing superconductivity with a magnetic field, it is found that the fluence and temperature dependence of relaxation rates is consistent with bimolecular recombination of electrons and holes across a gap (2ΔAF\Delta_{AF}) originating from antiferromagnetic correlations which comprise the pseudogap in electron-doped cuprates. This can be used to learn about coupling between electrons and high-energy (ω>2ΔAF\omega>2\Delta_{AF}) excitations in these compounds and set limits on the timescales on which antiferromagnetic correlations are static

    Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO3_3

    Get PDF
    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-band-gap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO3_3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device (SQUID) measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron-scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange

    Nonlinear optical probe of tunable surface electrons on a topological insulator

    Get PDF
    We use ultrafast laser pulses to experimentally demonstrate that the second-order optical response of bulk single crystals of the topological insulator Bi2_2Se3_3 is sensitive to its surface electrons. By performing surface doping dependence measurements as a function of photon polarization and sample orientation we show that second harmonic generation can simultaneously probe both the surface crystalline structure and the surface charge of Bi2_2Se3_3. Furthermore, we find that second harmonic generation using circularly polarized photons reveals the time-reversal symmetry properties of the system and is surprisingly robust against surface charging, which makes it a promising tool for spectroscopic studies of topological surfaces and buried interfaces

    A catalog of stream processing optimizations

    Get PDF
    Cataloged from PDF version of article.Various research communities have independently arrived at stream processing as a programming model for efficient and parallel computing. These communities include digital signal processing, databases, operating systems, and complex event processing. Since each community faces applications with challenging performance requirements, each of them has developed some of the same optimizations, but often with conflicting terminology and unstated assumptions. This article presents a survey of optimizations for stream processing. It is aimed both at users who need to understand and guide the system's optimizer and at implementers who need to make engineering tradeoffs. To consolidate terminology, this article is organized as a catalog, in a style similar to catalogs of design patterns or refactorings. To make assumptions explicit and help understand tradeoffs, each optimization is presented with its safety constraints (when does it preserve correctness?) and a profitability experiment (when does it improve performance?). We hope that this survey will help future streaming system builders to stand on the shoulders of giants from not just their own community. © 2014 ACM

    RailwayDB: adaptive storage of interaction graphs

    Get PDF
    We are living in an ever more connected world, where data recording the interactions between people, software systems, and the physical world is becoming increasingly prevalent. These data often take the form of a temporally evolving graph, where entities are the vertices and the interactions between them are the edges. We call such graphs interaction graphs. Various domains, including telecommunications, transportation, and social media, depend on analytics performed on interaction graphs. The ability to efficiently support historical analysis over interaction graphs requires effective solutions for the problem of data layout on disk. This paper presents an adaptive disk layout called the railway layout for optimizing disk block storage for interaction graphs. The key idea is to divide blocks into one or more sub-blocks. Each sub-block contains the entire graph structure, but only a subset of the attributes. This improves query I/O, at the cost of increased storage overhead. We introduce optimal integer linear program (ILP) formulations for partitioning disk blocks into sub-blocks with overlapping and nonoverlapping attributes. Additionally, we present greedy heuristics that can scale better compared to the ILP alternatives, yet achieve close to optimal query I/O. We provide an implementation of the railway layout as part of RailwayDB—an open-source graph database we have developed. To demonstrate the benefits of the railway layout, we provide an extensive experimental evaluation, including model-based as well as empirical results comparing our approach to baseline alternatives. © 2015, Springer-Verlag Berlin Heidelberg

    River: an intermediate language for stream processing

    Get PDF
    Summary This paper presents both a calculus for stream processing, named Brooklet, and its realization as an intermediate language, named River. Because River is based on Brooklet, it has a formal semantics that enables reasoning about the correctness of source translations and optimizations. River builds on Brooklet by addressing the real-world details that the calculus elides. We evaluated our system by implementing front-ends for three streaming languages, and three important optimizations, and a back-end for the System S distributed streaming runtime. Overall, we significantly lower the barrier to entry for new stream-processing languages and thus grow the ecosystem of this crucial style of programming. Copyright © 2015 John Wiley & Sons, Ltd

    Quantum correlations in a few-atom spin-1 Bose-Hubbard model

    Get PDF
    We study the thermal quantum correlations and entanglement in spin-1 Bose-Hubbard model with two and three particles. While we use negativity to calculate entanglement, more general non-classical correlations are quantified using a new measure based on a necessary and sufficient condition for zero-discord state. We demonstrate that the energy level crossings in the ground state of the system are signalled by both the behavior of thermal quantum correlations and entanglement
    corecore